Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A repeated-negotiation game approach to distributed (re)scheduling of multiple projects using decoupled learning

Tosselli, Laura Ramona; Bogado, Verónica SoledadIcon ; Martínez, Ernesto CarlosIcon
Fecha de publicación: 01/2020
Editorial: Elsevier Science
Revista: Simulation Modelling Practice and Theory
ISSN: 1569-190X
e-ISSN: 1878-1462
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Sistemas y Comunicaciones

Resumen

With peer-to-peer software technologies based on Blockchain and Smart Contracts, automated negotiation of client-server relationships for enterprise networking and project-oriented fractal organizations can now be readily implemented. To this aim, the distributed (emergent) schedule of client-server contracts must be a Nash equilibrium from which any agent finds no incentive to deviate. Also, to respond effectively to unplanned events and disturbances, the renegotiating process of all concerned client-server contracts must pursue a new Nash equilibrium solution in the face of incomplete information by each individual agent. In this work, distributed multi-project (re)scheduling is formulated as a repeated-negotiation game in a multi-agent setting where each agent resorts to decoupled learning rules for deciding the terms and conditions in each contract settlement. After a finite number of stages of the negotiation game, a new emergent schedule close to a Nash equilibrium is found. An agent-based simulation framework is proposed to implement the repeated negotiation game based on bilateral client-server contracts. The effectiveness of the proposed approach is demonstrated using a case study of a project-oriented fractal company in the pharmaceutical industry. Simulation results obtained highlight that repeated negotiations and decoupled learning are key for approaching a Nash equilibrium and welfare solutions to a (re)scheduling problem.
Palabras clave: MULTI-AGENT SYSTEMS , AUTOMATED NEGOTIATION , GAME THEORY , LEARNING
Ver el registro completo
 
Archivos asociados
Tamaño: 7.132Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/108150
URL: https://www.sciencedirect.com/science/article/pii/S1569190X19301133
DOI: http://dx.doi.org/10.1016/j.simpat.2019.101980
Colecciones
Articulos(INGAR)
Articulos de INST.DE DESARROLLO Y DISEÑO (I)
Citación
Tosselli, Laura Ramona; Bogado, Verónica Soledad; Martínez, Ernesto Carlos; A repeated-negotiation game approach to distributed (re)scheduling of multiple projects using decoupled learning; Elsevier Science; Simulation Modelling Practice and Theory; 98; 1-2020; 1-28; 101980
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES