Mostrar el registro sencillo del ítem
dc.contributor.author
Gil Costa, Graciela Verónica
dc.contributor.author
Ochoa, Cesar
dc.contributor.author
Printista, Alicia Marcela
dc.date.available
2015-07-07T18:46:29Z
dc.date.issued
2013-10
dc.identifier.citation
Gil Costa, Graciela Verónica; Ochoa, Cesar; Printista, Alicia Marcela; Suffix Array Performance Analysis for Multi-Core Platforms; Andrei Tchernykh, René Luna-García, Juan Manuel Ramírez-Alcaraz: Editorial.; Computación y Sistemas; 17; 3; 10-2013; 391-399
dc.identifier.issn
1405-5546
dc.identifier.uri
http://hdl.handle.net/11336/1080
dc.description.abstract
Performance analysis helps to understand how a particular invocation of an algorithm executes. Using the information provided by specific tools like the profiler tool Perf or the Performance Application Programming Interface (PAPI), the performance analysis process provides a bridging relationship between the algorithm execution and processor events according to the metrics defined by the developer. It is also useful to find performance limitations which depend exclusively on the code. Furthermore, to change an algorithm in order to optimize the code requires more than understanding of the obtained performance. It requires understanding the problem being solved. In this work we evaluate the performance achieved by a suffix array over a 32-core platform. Suffix arrays are efficient data structures for solving complex queries in a number of applications related to text databases, for instance, biological databases. We perform experiments to evaluate hardware features directly aimed to parallelize computation. Moreover, according to the results obtained by the performance evaluation tools, we propose an optimization technique to improve the use of the cache memory. In particular, we aim to reduce the number of cache memory replacement performed each time a new query is processed.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Andrei Tchernykh, René Luna-García, Juan Manuel Ramírez-Alcaraz: Editorial.
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Multicore.
dc.subject
Suffix Array.
dc.subject.classification
Ciencias Naturales y Exactas
dc.subject.classification
Ciencias de la Computación E Información
dc.subject.classification
Otras Ciencias de la Computación E Información
dc.title
Suffix Array Performance Analysis for Multi-Core Platforms
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2016-03-30 10:35:44.97925-03
dc.journal.volume
17
dc.journal.number
3
dc.journal.pagination
391-399
dc.journal.pais
México
dc.journal.ciudad
Mexico
dc.description.fil
Fil: Gil Costa, Graciela Verónica. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Laboratorio de Inv.en Inteligencia Artificial; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina;
dc.description.fil
Fil: Ochoa, Cesar. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Laboratorio de Inv.en Inteligencia Artificial; Argentina;
dc.description.fil
Fil: Printista, Alicia Marcela. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Laboratorio de Inv.en Inteligencia Artificial; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina;
dc.journal.title
Computación y Sistemas
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.redalyc.org/articulo.oa?id=61528316010
Archivos asociados