Mostrar el registro sencillo del ítem

dc.contributor.author
Arnold, Martín Alejandro  
dc.contributor.author
Cardona, Alberto  
dc.contributor.author
Brüls, Olivier  
dc.contributor.other
Betsch, Peter  
dc.date.available
2020-06-24T15:26:48Z  
dc.date.issued
2016  
dc.identifier.citation
Arnold, Martín Alejandro; Cardona, Alberto; Brüls, Olivier; A Lie algebra approach to Lie group time integration of constrained systems; Springer International Publishing; 565; 2016; 91-158  
dc.identifier.isbn
978-3-319-31877-6  
dc.identifier.uri
http://hdl.handle.net/11336/108097  
dc.description.abstract
Lie group integrators preserve by construction the Lie group structure of a nonlinear configuration space. In multibody dynamics, they support a representation of (large) rotations in a Lie group setting that is free of singularities. The resulting equations of motion are differential equations on a manifold with tangent space being parametrized by the corresponding Lie algebra. In the present paper, we discuss the time discretization of these equations of motion by a generalized-α Lie group integrator for constrained systems and show how to exploit in this context the linear structure of the Lie algebra. This linear structure allows a very natural definition of the generalized-α Lie group integrator, an efficient practical implementation and a very detailed error analysis. Furthermore, the Lie algebra approach may be combined with analytical transformations that help to avoid an undesired order reduction phenomenon in generalized-α time integration. After a tutorial-like step by-step introduction to the generalized-α Lie group integrator, we investigate its convergence behaviour and develop a novel initialization scheme to achieve second order accuracy in the application to constrained systems. The theoretical results are illustrated by a comprehensive set of numerical tests for two Lie group formulations of a rotating heavy top.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer International Publishing  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
LIE GROUP INTEGRATORS  
dc.subject.classification
Otras Ingeniería Mecánica  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A Lie algebra approach to Lie group time integration of constrained systems  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2020-03-02T17:42:40Z  
dc.journal.volume
565  
dc.journal.pagination
91-158  
dc.journal.pais
Suiza  
dc.journal.ciudad
Cham  
dc.description.fil
Fil: Arnold, Martín Alejandro. Martin Luther University Halle-wittenberg; Alemania  
dc.description.fil
Fil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina  
dc.description.fil
Fil: Brüls, Olivier. Universidad de Lieja; Bélgica  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/978-3-319-31879-0_3  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007%2F978-3-319-31879-0_3  
dc.conicet.paginas
290  
dc.source.titulo
Structure-Preserving Integrators in Nonlinear Structural Dynamics and Flexible Multibody Dynamics