Mostrar el registro sencillo del ítem

dc.contributor.author
Barone, Javier Orlando  
dc.date.available
2020-06-24T15:10:00Z  
dc.date.issued
2019-02  
dc.identifier.citation
Barone, Javier Orlando; Use of multiple regression analysis and artificial neural networks to model the effect of nitrogen in the organogenesis of Pinus taeda L.; Springer; Plant Cell, Tissue and Organ Culture; 137; 3; 2-2019; 455–464  
dc.identifier.issn
0167-6857  
dc.identifier.uri
http://hdl.handle.net/11336/108095  
dc.description.abstract
Mineral nutrition is a very important factor in the success of in vitro plant cultures. The aim was to compare the predictive capacity of the models obtained using a parametric technique such as multiple regression analysis with a nonparametric one such as artificial neural networks. These techniques were used for modeling the effect of total nitrogen concentration and the ratio nitrate: ammonium in the regeneration rate, oxidation rate, callus proliferation rate, number of buds per explant and buds-forming capacity index. Both the concentration of total nitrogen and the relationship between the concentrations of nitrate and ammonium influenced the morphogenetic responses. Optimal buds regeneration was in the range of 10?20 mM of the total nitrogen concentration and 1?2 of the nitrate: ammonium ratio. Higher concentrations of nitrogen produced an increase in the oxidation rate while the low nitrate: ammonium ratio favored the callus proliferation rate. Artificial neural network models presented a better precision to predict the different responses to the total content of nitrogen and the nitrate: ammonium rate, with higher coefficients of determination and correlation. They also presented a lower root mean squareerror for all the variables studied than the multiple regression analysis.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CAULOGENESIS  
dc.subject
IN VITRO PROCESS  
dc.subject
LOBLOLLY PINE  
dc.subject
MINERAL NUTRITION  
dc.subject
MULTILAYER PERCEPTRON  
dc.subject.classification
Silvicultura  
dc.subject.classification
Agricultura, Silvicultura y Pesca  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Use of multiple regression analysis and artificial neural networks to model the effect of nitrogen in the organogenesis of Pinus taeda L.  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-06-23T14:51:21Z  
dc.identifier.eissn
1573-5044  
dc.journal.volume
137  
dc.journal.number
3  
dc.journal.pagination
455–464  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Barone, Javier Orlando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Botánica del Nordeste. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias. Instituto de Botánica del Nordeste; Argentina  
dc.journal.title
Plant Cell, Tissue and Organ Culture  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s11240-019-01581-y  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11240-019-01581-y