Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

New insights in the DNA-[Cr(phen)2(dppz)]3+ binding and photocleavage properties by the complex with an intercalating ligand

Toneatto, JudithIcon ; Boero, Rodolfo AlejandroIcon ; Lorenzatti, GuadalupeIcon ; Cabanillas, Ana Maria de Los A.Icon ; Arguello, GerardoIcon
Fecha de publicación: 07/2010
Editorial: Elsevier Science Inc
Revista: Journal of Inorganic Biochemistry
ISSN: 0162-0134
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Químicas

Resumen

Due to the key role of DNA in cell life and pathological processes, the design of specific chemical nucleases, fic chemical nucleases, DNA probes and alkylating agents is an important research area for the development of new therapeutic agents and tools in Biochemistry. Hence, the interaction of small molecules with DNA has attracted in particular a great deal of attention. 27a great deal of attention. The aim of this study was to investigate the ability of [Cr(phen)2(dppz)]3+ to associate with DNA and to 282(dppz)]3+ to associate with DNA and to characterize it as photocleavage reagent for Photodynamic Therapy (PDT).Chromium(III) complex [Cr(phen)2(dppz)]3+, (dppz=dipyridophenazine, phen=1,10-phenanthroline), 302(dppz)]3+, (dppz=dipyridophenazine, phen=1,10-phenanthroline),where dppz is a planar bidentate ligand with an extended ¦Ð system, has been found to bind strongly 31¦Ð system, has been found to bind strongly to double strand oligonucleotides (ds-oligo) and plasmid DNA with intrinsic DNA binding constants, Kb, of 32ds-oligo) and plasmid DNA with intrinsic DNA binding constants, Kb, of (3.9¡À0.3)¡Á105 M−1 and (1.1¡À0.1)¡Á105 M−1, respectively. The binding properties to DNA were 335 M−1 and (1.1¡À0.1)¡Á105 M−1, respectively. The binding properties to DNA were investigated by UV¨Cvisible (UV¨CVis) absorption spectroscopy and electrophoretic studies. UV¨CVis absorption 34¨Cvisible (UV¨CVis) absorption spectroscopy and electrophoretic studies. UV¨CVis absorption data provide clearly that the chromium(III) complex interacts with DNA intercalatively. Competitive binding experiments show that the enhancement in the emission intensity of ethidium bromide (EthBr) in the presence of DNA was quenched by [Cr(phen)2(dppz)]3+, indicating that the Cr(III) complex displaces EthBr 372(dppz)]3+, indicating that the Cr(III) complex displaces EthBr from its binding site in plasmid DNA. Moreover, [Cr(phen)2(dppz)]3+, non-covalently bound to 382(dppz)]3+, non-covalently bound to DNA, promotes the photocleavage of plasmid DNA under 457 nm irradiation. We also found that the irradiated Cr(III)-plasmid DNA association is able to impair the transforming capacity of bacteria. These results provide evidence confirming the responsible and essential role of the excited state of [Cr(phen)2(dppz)]3+ for firming the responsible and essential role of the excited state of [Cr(phen)2(dppz)]3+ for damaging the DNA structure. The combination of DNA, [Cr(phen)2(dppz)]3+ and light, is necessary to induce damage. In addition, assays of the photosensitization of transformed bacterial suspensions suggest that Escherichia coli may be photoinactivated by irradiation in the presence of [Cr(phen)2(dppz)]3+. In sum, our may be photoinactivated by irradiation in the presence of [Cr(phen)2(dppz)]3+. In sum, our results allow us to postulate the [Cr(phen)2(dppz)]3+ complex as a very attractive candidate for DNA 2(dppz)]3+ complex as a very attractive candidate for DNA photocleavage with potential applications in Photodynamic Therapy (PDT).fic chemical nucleases, DNA probes and alkylating agents is an important research area for the development of new therapeutic agents and tools in Biochemistry. Hence, the interaction of small molecules with DNA has attracted in particular a great deal of attention. 27a great deal of attention. The aim of this study was to investigate the ability of [Cr(phen)2(dppz)]3+ to associate with DNA and to 282(dppz)]3+ to associate with DNA and to characterize it as photocleavage reagent for Photodynamic Therapy (PDT).Chromium(III) complex [Cr(phen)2(dppz)]3+, (dppz=dipyridophenazine, phen=1,10-phenanthroline), 302(dppz)]3+, (dppz=dipyridophenazine, phen=1,10-phenanthroline),where dppz is a planar bidentate ligand with an extended ¦Ð system, has been found to bind strongly 31¦Ð system, has been found to bind strongly to double strand oligonucleotides (ds-oligo) and plasmid DNA with intrinsic DNA binding constants, Kb, of 32ds-oligo) and plasmid DNA with intrinsic DNA binding constants, Kb, of (3.9¡À0.3)¡Á105 M−1 and (1.1¡À0.1)¡Á105 M−1, respectively. The binding properties to DNA were 335 M−1 and (1.1¡À0.1)¡Á105 M−1, respectively. The binding properties to DNA were investigated by UV¨Cvisible (UV¨CVis) absorption spectroscopy and electrophoretic studies. UV¨CVis absorption 34¨Cvisible (UV¨CVis) absorption spectroscopy and electrophoretic studies. UV¨CVis absorption data provide clearly that the chromium(III) complex interacts with DNA intercalatively. Competitive binding experiments show that the enhancement in the emission intensity of ethidium bromide (EthBr) in the presence of DNA was quenched by [Cr(phen)2(dppz)]3+, indicating that the Cr(III) complex displaces EthBr 372(dppz)]3+, indicating that the Cr(III) complex displaces EthBr from its binding site in plasmid DNA. Moreover, [Cr(phen)2(dppz)]3+, non-covalently bound to 382(dppz)]3+, non-covalently bound to DNA, promotes the photocleavage of plasmid DNA under 457 nm irradiation. We also found that the irradiated Cr(III)-plasmid DNA association is able to impair the transforming capacity of bacteria. These results provide evidence confirming the responsible and essential role of the excited state of [Cr(phen)2(dppz)]3+ for firming the responsible and essential role of the excited state of [Cr(phen)2(dppz)]3+ for damaging the DNA structure. The combination of DNA, [Cr(phen)2(dppz)]3+ and light, is necessary to induce damage. In addition, assays of the photosensitization of transformed bacterial suspensions suggest that Escherichia coli may be photoinactivated by irradiation in the presence of [Cr(phen)2(dppz)]3+. In sum, our may be photoinactivated by irradiation in the presence of [Cr(phen)2(dppz)]3+. In sum, our results allow us to postulate the [Cr(phen)2(dppz)]3+ complex as a very attractive candidate for DNA 2(dppz)]3+ complex as a very attractive candidate for DNA photocleavage with potential applications in Photodynamic Therapy (PDT).
Palabras clave: CHROMIUM COMPLEX , PHOTOSENSITIZATION , INTERCALATING LIGAND , DNA BINDING , DNA PHOTOCLEAVAGE , BACTERIAL TRANSFORMATION , BACTERIAL GROWTH PHOTOINHIBITION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 686.0Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/108004
URL: https://www.sciencedirect.com/science/article/pii/S0162013410000486
DOI: http://dx.doi.org/10.1016/j.jinorgbio.2010.02.010
Colecciones
Articulos(CIBICI)
Articulos de CENTRO DE INV.EN BIOQUI.CLINICA E INMUNOLOGIA
Articulos(IBYME)
Articulos de INST.DE BIOLOGIA Y MEDICINA EXPERIMENTAL (I)
Articulos(INFIQC)
Articulos de INST.DE INVESTIGACIONES EN FISICO- QUIMICA DE CORDOBA
Citación
Toneatto, Judith; Boero, Rodolfo Alejandro; Lorenzatti, Guadalupe; Cabanillas, Ana Maria de Los A.; Arguello, Gerardo; New insights in the DNA-[Cr(phen)2(dppz)]3+ binding and photocleavage properties by the complex with an intercalating ligand; Elsevier Science Inc; Journal of Inorganic Biochemistry; 104; 7; 7-2010; 697-703
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES