Mostrar el registro sencillo del ítem
dc.contributor.author
Schaumburg, Federico
dc.contributor.author
Berli, Claudio Luis Alberto
dc.date.available
2020-06-23T13:50:59Z
dc.date.issued
2019-07
dc.identifier.citation
Schaumburg, Federico; Berli, Claudio Luis Alberto; Assessing the rapid flow in multilayer paper-based microfluidic devices; Springer Heidelberg; Microfluidics and Nanofluidics; 23; 8; 7-2019
dc.identifier.issn
1613-4982
dc.identifier.uri
http://hdl.handle.net/11336/107901
dc.description.abstract
A hot topic in paper-based microfluidics is the achievement of capillary-driven flows much faster than the ones theoretically allowed by the hydrodynamic permeability of common filter papers. Recent works have experimentally shown that the flow rates can be substantially improved by using multilayer paper systems instead of single-layer papers. The present work discusses a theoretical assessment of fluid transport in multilayer paper-based microfluidic devices. The proposed model effectively predicts a series of experimental observations, namely: the occurrence of fluid velocities 2 orders of magnitudelarger than those measured in single-layer paper; the variation of fluid velocity as a function of the gap thickness, whichpresents a particular maximum; the effects of gravity on the filling dynamics, which is unexpected for single-layer paper; and the effect of the sample volume size, which leads to non-trivial filling dynamics. It is worth mentioning that these effects cannot be described by Lucas?Washburn model for single layers, because they arise from the interplay among the coupled flow domains in the multilayer system, together with the action of the gravitational force. The proposed model provides clues to understand the fundamentals behind the capillary-driven flow in multilayer systems, and hence to better design paper-based microfluidics devices for specified flow rates and time-stepped functions.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer Heidelberg
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
RAPID FLOW
dc.subject
PAPER-BASED MICROFLUIDICS
dc.subject
CAPILLARY PRESSURE
dc.subject
MULTILAYER SYSTEMS
dc.subject.classification
Ingeniería Médica
dc.subject.classification
Ingeniería Médica
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Assessing the rapid flow in multilayer paper-based microfluidic devices
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-06-16T13:41:37Z
dc.journal.volume
23
dc.journal.number
8
dc.journal.pais
Alemania
dc.journal.ciudad
Heidelberg
dc.description.fil
Fil: Schaumburg, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
dc.description.fil
Fil: Berli, Claudio Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
dc.journal.title
Microfluidics and Nanofluidics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s10404-019-2265-3
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10404-019-2265-3
Archivos asociados