Artículo
Metric geometry of infinite dimensional Lie groups and their homogeneous spaces
Fecha de publicación:
09/2019
Editorial:
De Gruyter
Revista:
Forum Mathematicum
ISSN:
0933-7741
e-ISSN:
1435-5337
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the geometry of Lie groups G with a continuous Finsler metric, in presence of a subgroup K such that the metric is right-invariant for the action of K. We present a systematic study of the metric and geodesic structure of homogeneous spaces M obtained by the quotient M≃G/K. Of particular interest are left-invariant metrics of G which are then bi-invariant for the action of K. We then focus on the geodesic structure of groups K that admit bi-invariant metrics, proving that one-parameter groups are short paths for those metrics, and characterizing all other short paths. We provide applications of the results obtained, in two settings: manifolds of Banach space linear operators, and groups of maps from compact manifolds.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Larotonda, Gabriel Andrés; Metric geometry of infinite dimensional Lie groups and their homogeneous spaces; De Gruyter; Forum Mathematicum; 31; 6; 9-2019; 1567-1605
Compartir
Altmétricas
Items relacionados
Mostrando titulos relacionados por título, autor y tema.
-
Taragano, Fernando Emilio ; Allegri, Ricardo Francisco ; Heisecke Peralta, Silvina Lidia ; Martelli, María I.; Feldman, Mónica L.; Sánchez, Viviana; García, Virginia A.; Tufro, Graciela; Castro, Diego M.; Leguizamón, Patricio Perez; Guelar, Verónica; Ruotolo, Eva; Zegarra, Cecilia; Dillon, Carol (IOS Press, 2018-02)
-
Rosa, Antonio Sebastián ; Disalvo, Edgardo Anibal ; Cejas, Jimena del Pilar ; Frías, María de los Ángeles (Elsevier Science, 2019-06)
-
Pogorelsky, Barbara; Vay, Cristian Damian (Academic Press Inc Elsevier Science, 2016-10)