Mostrar el registro sencillo del ítem

dc.contributor.author
Jure, F. A.  
dc.contributor.author
Arguissain, F. G.  
dc.contributor.author
Biurrun Manresa, José Alberto  
dc.contributor.author
Andersen, O. K.  
dc.date.available
2020-06-12T12:44:35Z  
dc.date.issued
2019-06  
dc.identifier.citation
Jure, F. A.; Arguissain, F. G.; Biurrun Manresa, José Alberto; Andersen, O. K.; Conditioned pain modulation affects the withdrawal reflex pattern to nociceptive stimulation in humans; Pergamon-Elsevier Science Ltd; Neuroscience; 408; 6-2019; 259-271  
dc.identifier.issn
0306-4522  
dc.identifier.uri
http://hdl.handle.net/11336/107376  
dc.description.abstract
Human studies have repeatedly shown that conditioning pain modulation (CPM) exerts an overall descending inhibitory effect over spinal nociceptive activity. Previous studies have reported a reduction of the nociceptive withdrawal reflex (NWR) under CPM. Still, how descending control influences the muscle activation patterns involved in this protective behavior remains unknown. This study aimed to characterize the effects of CPM on the withdrawal pattern assessed by a muscle synergy analysis of several muscles involved in the lower limb NWR. To trigger descending inhibition, CPM paradigm was applied using the cold-pressor test (CPT) as conditioning stimulus. Sixteen healthy volunteers participated. The NWR was evoked by electrical stimulation on the arch of the foot before, during and after the CPT. Electromyographic (EMG) activity of two proximal (rectus femoris and biceps femoris) and two distal (tibialis anterior and soleus) muscles was recorded. A muscle synergy analysis was performed on the decomposition of the EMG signals, based on a non-negative matrix factorization algorithm. Results showed that two synergies (Module I and II) were sufficient to describe the NWR pattern. Under CPM, Module I activation amplitude was significantly reduced in a narrow time-window interval (118?156 ms) mainly affecting distal muscles, whereas Module II activation amplitude was significantly reduced in a wider time-window interval (150?250 ms), predominantly affecting proximal muscles. These findings suggest that proximal muscles are largely under supraspinal control. The descending inhibitory drive exerted onto the spinal cord may adjust the withdrawal pattern by differential recruitment of the muscles involved in the protective behavior.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
COLD-PRESSOR TEST  
dc.subject
ELECTRICAL STIMULATION  
dc.subject
MUSCLE SYNERGY  
dc.subject
NOCICEPTIVE WITHDRAWAL REFLEX  
dc.subject
WITHDRAWAL PATTERN  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Conditioned pain modulation affects the withdrawal reflex pattern to nociceptive stimulation in humans  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-06-01T13:40:59Z  
dc.journal.volume
408  
dc.journal.pagination
259-271  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Jure, F. A.. Center For Neuroplasticity And Pain (cnap), Smi; Dinamarca  
dc.description.fil
Fil: Arguissain, F. G.. Center For Neuroplasticity And Pain (cnap), Smi; Dinamarca  
dc.description.fil
Fil: Biurrun Manresa, José Alberto. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; Argentina  
dc.description.fil
Fil: Andersen, O. K.. Center For Neuroplasticity And Pain (cnap), Smi; Dinamarca  
dc.journal.title
Neuroscience  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.neuroscience.2019.04.016