Mostrar el registro sencillo del ítem

dc.contributor.author
Hernandez, J. A.  
dc.contributor.author
Oliver, J.  
dc.contributor.author
Huespe, Alfredo Edmundo  
dc.contributor.author
Caicedo, M.  
dc.contributor.author
Cante, J. C.  
dc.date.available
2020-06-09T14:48:28Z  
dc.date.issued
2014  
dc.identifier.citation
Hernandez, J. A.; Oliver, J.; Huespe, Alfredo Edmundo; Caicedo, M.; Cante, J. C.; Computational Homogenization of Inelastic Materials using Model Order Reduction; CIMNE; 2014; 114  
dc.identifier.isbn
978-84-941686-4-2  
dc.identifier.uri
http://hdl.handle.net/11336/107000  
dc.description.abstract
The present work is concerned with the application of projection-based, model reduction techniques to the efficient solution of the cell equilibrium equation appearing in (otherwise prohibitively costly) two-scale, computational homogenization problems. The main original elements of the proposed Reduced-Order Model (ROM) are fundamentally three. Firstly, the reduced set of empirical, globally-supported shape functions are constructed from pre-computed Finite Element (FE) snapshots by applying, rather than the standard Proper Orthogonal Decomposition (POD), a partitioned version of the POD that accounts for the elastic/inelastic character of the solution. Secondly, we show that, for purposes of fast evaluation of the nonaffine term (in this case, the stresses), the widely adopted approach of replacing such a term by a low-dimensional interpolant constructed from POD modes, obtained, in turn, from FE snapshots, leads invariably to ill-posed formulations. To safely avoid this ill-posedness, we propose a method that consists in expanding the approximation space for the interpolant so that it embraces also the gradient of the global shape functions. A direct consequence of such an expansion is that the spectral properties of the Jacobian matrix of the governing equation becomes affected by the number and particular placement of sampling points used in the interpolation. The third innovative ingredient of the present work is a points selection algorithm that does acknowledge this peculiarity and chooses the sampling points guided, not only by accuracy requirements, but also by stability considerations. The efficiency of the proposed approach is critically assessed in the solution of the cell problem corresponding to a highly complex porous metal material under plane strain conditions. Results obtained convincingly show that the computational complexity of the proposed ROM is virtually independent of the size and geometrical complexity of the considered representative volume, and this affords gains in performance with respect to finite element analyses of above three orders of magnitude without significantly sacrificing accuracy hence the appellation High-Performance ROM.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
CIMNE  
dc.rights
info:eu-repo/semantics/closedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
two-scale material homogenization  
dc.subject
Reduced order models  
dc.subject
inelastic materials  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Computational Homogenization of Inelastic Materials using Model Order Reduction  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/book  
dc.type
info:ar-repo/semantics/libro  
dc.date.updated
2020-05-12T20:39:46Z  
dc.journal.pagination
114  
dc.journal.pais
España  
dc.journal.ciudad
Barcelona  
dc.description.fil
Fil: Hernandez, J. A.. Universidad Politécnica de Catalunya; España  
dc.description.fil
Fil: Oliver, J.. Universidad Politécnica de Catalunya; España  
dc.description.fil
Fil: Huespe, Alfredo Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina  
dc.description.fil
Fil: Caicedo, M.. Universidad Politécnica de Catalunya; España  
dc.description.fil
Fil: Cante, J. C.. Universidad Politécnica de Catalunya; España  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.cimne.com/tiendaCIMNE/tmp/111167755645/M141.pdf