Artículo
On the geometry of generalized inverses
Fecha de publicación:
04/2005
Editorial:
Wiley VCH Verlag
Revista:
Mathematische Nachrichten
ISSN:
0025-584X
e-ISSN:
1522-2616
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the set S = {(a, b) ∈ A × A : aba = a, bab = b} which pairs the relatively regular elements of aBanach algebra A with their pseudoinverses, and prove that it is an analytic submanifold of A × A. If A is a C∗-algebra, inside S lies a copy the set I of partial isometries, we prove that this set is a C∞ submanifold of S (as well as a submanifold of A). These manifolds carry actions from, respectively, G_A × G_A and U_A ×U_A, where G_A is the group of invertibles of A and U_A is the subgroup of unitary elements. These actions define homogeneous reductive structures for S and I (in the differential geometric sense). Certain topological and homotopical properties of these sets are derived. In particular, it is shown that if A is a von Neumann algebra and p is a purely infinite projection of A, then the connected component I_p of p in I is simply connected. If 1 − p is also purely infinite, then I_p is contractible.
Palabras clave:
RELATIVELY REGULAR
,
PARTIAL ISOMETRY
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Andruchow, Esteban; Corach, Gustavo; Mbekhta, Mostafa; On the geometry of generalized inverses; Wiley VCH Verlag; Mathematische Nachrichten; 278; 7-8; 4-2005; 756-770
Compartir
Altmétricas