Mostrar el registro sencillo del ítem

dc.contributor.author
Ceccarelli, Soledad  
dc.contributor.author
Balsalobre, Agustin  
dc.contributor.author
Susevich, Maria Laura  
dc.contributor.author
Echeverria, Maria Gabriela  
dc.contributor.author
Gorla, David Eladio  
dc.contributor.author
Marti, Gerardo Anibal  
dc.date.available
2017-01-02T17:50:19Z  
dc.date.issued
2015-03  
dc.identifier.citation
Ceccarelli, Soledad; Balsalobre, Agustin; Susevich, Maria Laura; Echeverria, Maria Gabriela; Gorla, David Eladio; et al.; Modelling the potential geographic distribution of triatomines infected by Triatoma virus in the southern cone of South America; Biomed Central; Parasites And Vectors; 8; 153; 3-2015  
dc.identifier.issn
1756-3305  
dc.identifier.uri
http://hdl.handle.net/11336/10684  
dc.description.abstract
Background: Triatoma virus (TrV) is the only entomopathogenous virus identified in triatomines. We estimated the potential geographic distribution of triatomine species naturally infected by TrV, using remotely sensed and meteorological environmental variables, to predict new potential areas where triatomines infected with TrV may be found. Methods: Detection of TrV infection in samples was performed with RT-PCR. Ecological niche models (ENM) were constructed using the MaxEnt software. We used 42 environmental variables derived from remotely sensed imagery (AVHRR) and 19 bioclimatic variables (Bioclim). The MaxEnt Jackknife procedure was used to minimize the number of environmental variables that showed an influence on final models. The goodness of fit of the model predictions was evaluated by the mean area under the curve (AUC). Results: We obtained 37 samples of 7 species of triatomines naturally infected with TrV. Of the TrV positive samples, 32% were from sylvatic habitat, 46% came from peridomicile habitats and 22% from domicile habitats. Five of the seven infected species were found only in the sylvatic habitat, one species only in the domicile and only Triatoma infestans was found in the three habitats. The MaxEnt model estimated with the Bioclim dataset identified five environmental variables as best predictors: temperature annual range, mean diurnal range, mean temperature of coldest quarter, temperature seasonality and annual mean temperature. The model using the AVHRR dataset identified six environmental variables: minimum Land Surface Temperature (LST), minimum Middle Infrared Radiation (MIR), LST annual amplitude, MIR annual amplitude annual, LST variance and MIR variance. The potential geographic distribution of triatomine species infected by TrV coincides with the Chaco and the Monte ecoregions either modelled by AVHRR or Bioclim environmental datasets. Conclusions: Our results show that the conditions of the Dry Chaco ecoregion in Argentina are favourable for the infection of triatomine species with TrV, and open the possibility of its use as a potential agent for the biological control of peridomestic and/or sylvatic triatomine species. Results identify areas of potential occurrence that should be verified in the field.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Biomed Central  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Triatoma Virus  
dc.subject
Triatominae  
dc.subject
Ecological Niche Modelling  
dc.subject
Maxent  
dc.subject
Worldclim  
dc.subject
Avhrr Imagery  
dc.subject.classification
Virología  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Modelling the potential geographic distribution of triatomines infected by Triatoma virus in the southern cone of South America  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-12-12T14:20:54Z  
dc.journal.volume
8  
dc.journal.number
153  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Ceccarelli, Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Estudios Parasitológicos y de Vectores (i); Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; Argentina  
dc.description.fil
Fil: Balsalobre, Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Estudios Parasitológicos y de Vectores (i); Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; Argentina  
dc.description.fil
Fil: Susevich, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Estudios Parasitológicos y de Vectores (i); Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; Argentina  
dc.description.fil
Fil: Echeverria, Maria Gabriela. Universidad Nacional de la Plata. Facultad de Ciencias Veterinarias. Departamento de Microbiología. Cátedra de Virología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Gorla, David Eladio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Regional de Investigaciones Cientificas y Transferencia Tecnológica de Anillaco; Argentina  
dc.description.fil
Fil: Marti, Gerardo Anibal. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Estudios Parasitológicos y de Vectores (i); Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; Argentina  
dc.journal.title
Parasites And Vectors  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1186/s13071-015-0761-1  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pubmed/25881183  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/25881183/