Mostrar el registro sencillo del ítem
dc.contributor.author
Bugnon, Leandro Ariel
dc.contributor.author
Yones, Cristian Ariel
dc.contributor.author
Raad, Jonathan
dc.contributor.author
Gerard, Matias Fernando
dc.contributor.author
Rubiolo, Mariano
dc.contributor.author
Merino, Gabriela Alejandra
dc.contributor.author
Pividori, Milton Damián
dc.contributor.author
Di Persia, Leandro Ezequiel
dc.contributor.author
Milone, Diego Humberto
dc.contributor.author
Stegmayer, Georgina
dc.date.available
2020-06-06T23:13:26Z
dc.date.issued
2020-02
dc.identifier.citation
Bugnon, Leandro Ariel; Yones, Cristian Ariel; Raad, Jonathan; Gerard, Matias Fernando; Rubiolo, Mariano; et al.; DL4papers: a deep learning approach for the automatic interpretation of scientific articles.; Oxford University Press; Bioinformatics (Oxford, England); 2-2020
dc.identifier.issn
1367-4803
dc.identifier.uri
http://hdl.handle.net/11336/106811
dc.description.abstract
Motivation: In precision medicine, next-generation sequencing and novel preclinical reports have led to an increasingly large amount of results, published in the scientific literature. However, identifying novel treatments or predicting a drug response in, for example, cancer patients, from the huge amount of papers available remains a laborious and challenging work. This task can be considered a text mining problem that requires reading a lot of academic documents for identifying a small set of papers describing specific relations between key terms. Due to the infeasibility of the manual curation of these relations, computational methods that can automatically identify them from the available literature are urgently needed.Results: We present DL4papers, a new method based on deep learning that is capable of analyzing and interpreting papers in order to automatically extract relevant relations between specific keywords. DL4papers receives as input a query with the desired keywords, and it returns a ranked list of papers that contain meaningful associations between the keywords. The comparison against related methods showed that our proposal outperformed them in a cancer corpus. The reliability of the DL4papers output list was also measured, revealing that between 83% and 100% of the first documents retrieved for a particular search have relevant relations. This shows that our model can guarantee that in the top-2 papers of the ranked list, the relation can be effectively found. Furthermore, the model is capable of highlighting, within each document, the specific fragments that have the associations of the input keywords. This can be very useful in order to pay attention only to the highlighted text, instead of reading the full paper. We believe that our proposal could be used as an accurate tool for rapidly identifying relationships between genes and their mutations, drug responses and treatments in the context of a certain disease. This new approach can certainly be a very useful and valuable resource for the advancement of the precision medicine field.Availability and implementation: Full source code and data are available at: https://sourceforge.net/projects/sourcesinc/files/dl4papers/A web-demo is also available at: http://sinc.unl.edu.ar/web-demo/dl4papers/
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Oxford University Press
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DEEP LEARNING
dc.subject
NATURAL LAGUAGE PROCESSING
dc.subject
CANCER
dc.subject
DRUG
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
DL4papers: a deep learning approach for the automatic interpretation of scientific articles.
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-06-01T13:34:33Z
dc.journal.pais
Reino Unido
dc.journal.ciudad
Oxford
dc.description.fil
Fil: Bugnon, Leandro Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Yones, Cristian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Raad, Jonathan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Gerard, Matias Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Rubiolo, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Merino, Gabriela Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Pividori, Milton Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Di Persia, Leandro Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Stegmayer, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.journal.title
Bioinformatics (Oxford, England)
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://fdslive.oup.com/www.oup.com/pdf/production_in_progress.pdf
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/bioinformatics/btaa111
Archivos asociados