Artículo
Some operator inequalities for unitary invariant norms
Fecha de publicación:
12/2005
Editorial:
Unión Matemática Argentina
Revista:
Revista de la Unión Matemática Argentina
ISSN:
0041-6932
e-ISSN:
1669-9637
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let L(H) be the algebra of bounded operators on a complex separable Hilbert space H. Let N be a unitary invariant norm defined on a norm ideal I ⊆ L(H)$. Given two positive invertible operators P, Q ∈ L(H) and k ∈ (-2,2], we show that N(PTQ^{-1} +P^{-1}TQ + kT) (2+k) N(T), T ∈ I. This extends Zhang's inequality for matrices. We prove that this inequality is equivalent to two particular cases of itself, namely P=Q and Q=P^{-1}. We also characterize those numbers k such that the map ϒ : L(H)→ L(H) given by ϒ (T) = PTQ^{-1} +P^{-1}TQ + kT is invertible, and we estimate the induced norm of ϒ^{-1} acting on the norm ideal I. We compute sharp constants for the involved inequalities in several particular cases.
Palabras clave:
POSITIVE MATRICES
,
INEQUALITIES
,
UNITARILY INVARIANT NORM
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Cano, Cristina; Mosconi, Irene; Stojanoff, Demetrio; Some operator inequalities for unitary invariant norms; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 46; 2; 12-2005; 53-66
Compartir