Artículo
Soil Nitrogen in Relation to Quality and Decomposability of Plant Litter in the Patagonian Monte, Argentina
Carrera, Analía Lorena
; Vargas, Dariana Noe
; Campanella, María Victoria
; Bertiller, Monica Beatriz
; Sain, Claudia Leticia
; Mazzarino, Maria Julia
Fecha de publicación:
11/2005
Editorial:
Springer
Revista:
Plant Ecology
ISSN:
1385-0237
e-ISSN:
1573-5052
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In two consecutive years, we analysed the effect of litter quality, quantity and decomposability on soil N at three characteristic sites of the Patagonian Monte. We assessed (i) concentrations of N, C, lignin and total phenolics and the C/N ratio in senesced leaves as indicators of litter quality of three species of each dominant plant life form (evergreen shrubs and perennial grasses), and (ii) N, and organic-C concentrations, potential N-mineralisation and microbial-N flush in the soil beneath each species. Rate constants of potential decomposition of senesced leaves and N content in decaying leaves during the incubation period were assessed in composite samples of the three sites as indicators of litter decomposability. Further, we estimated for each species leaf-litter production, leaf-litter on soil, and the mass of standing senesced leaves during the senescence period. Senesced leaves of evergreen shrubs showed higher decomposability than those of perennial grasses. Leaf-litter production, leaf-litter on soil, and the mass of standing senesced leaves differed significantly among species. The largest variations in leaf-litter production and leaf-litter on soil were observed in evergreen shrubs. The mass of standing senesced leaves was larger in perennial grasses than in evergreen shrubs. Nitrogen, organic C and potential N-mineralisation in soil were higher underneath evergreen shrubs than beneath perennial grasses, while no significant differences were found in microbial-N flush among life forms. The initial concentrations of C, N and total phenolics of senesced leaves explained together 78% of the total variance observed in the dry mass loss of decaying leaves. Litter decomposition rates explained 98%, 98%, 73%, and 67% of the total variance of soil N, organic C, net-N mineralisation, and microbial-N flush, respectively. We concluded that leaf-litter decomposition rates along with leaf-litter production are meaningful indicators of plant local effects on soil N dynamics in shrublands of the Patagonian Monte, and probably in other similar ecosystems of the world dominated by slow growing species that accumulate a wide variety of secondary metabolites including phenolics. Indicators such as C/N or lignin concentration usually used to predict litter decomposability or local plant effects may not be adequate in the case of slow growing species that accumulate a wide range of secondary metabolites or have long leaf lifespan and low leaf-litter production.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT-CENPAT)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CENPAT
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CENPAT
Articulos(INIBIOMA)
Articulos de INST. DE INVEST.EN BIODIVERSIDAD Y MEDIOAMBIENTE
Articulos de INST. DE INVEST.EN BIODIVERSIDAD Y MEDIOAMBIENTE
Citación
Carrera, Analía Lorena; Vargas, Dariana Noe; Campanella, María Victoria; Bertiller, Monica Beatriz; Sain, Claudia Leticia; et al.; Soil Nitrogen in Relation to Quality and Decomposability of Plant Litter in the Patagonian Monte, Argentina; Springer; Plant Ecology; 181; 1; 11-2005; 139-151
Compartir
Altmétricas