Mostrar el registro sencillo del ítem

dc.contributor.author
Poggi, Facundo Sebastian  
dc.contributor.author
Sasyk, Roman  
dc.date.available
2020-06-03T19:18:44Z  
dc.date.issued
2019-05  
dc.identifier.citation
Poggi, Facundo Sebastian; Sasyk, Roman; An ultrapower construction of the multiplier algebra of a C*-algebra with an application to boundary amenability of groups; Mashhad Tusi Mathematical Research Group; Advances in Operator Theory; 4; 4; 5-2019; 852-864  
dc.identifier.issn
2538-225X  
dc.identifier.uri
http://hdl.handle.net/11336/106621  
dc.description.abstract
Using ultrapowers of C-algebras, we provide a new construction of the multiplier algebra of a C-algebra. This extends the work of Avsec and Goldbring [Houston J. Math., to appear, arXiv:1610.09276] to the setting ofnoncommutative and nonseparable C-algebras. We also extend their work to give a new proof of the fact that groups acting transitively on locally finite trees with boundary amenable stabilizers are boundary amenable.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Mashhad Tusi Mathematical Research Group  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MULTIPLIER ALGEBRA  
dc.subject
ULTRAPRODUCT OF C* ALGEBRAS  
dc.subject
BOUNDARY AMENABLE GROUP  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
An ultrapower construction of the multiplier algebra of a C*-algebra with an application to boundary amenability of groups  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-05-27T16:36:45Z  
dc.journal.volume
4  
dc.journal.number
4  
dc.journal.pagination
852-864  
dc.journal.pais
Irán  
dc.description.fil
Fil: Poggi, Facundo Sebastian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Sasyk, Roman. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.journal.title
Advances in Operator Theory  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.15352/aot.1904-1501  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.aot/1557885618