Artículo
Existence of quasicrystals and universal stable sampling and interpolation in LCA groups
Fecha de publicación:
05/2019
Editorial:
American Mathematical Society
Revista:
Transactions Of The American Mathematical Society
ISSN:
0002-9947
e-ISSN:
1088-6850
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We characterize all the locally compact abelian (LCA) groups that contain quasicrystals (a class of model sets). Moreover, we describe all possible quasicrystals in the group constructing an appropriate lattice associated with the cut and project scheme that produces it. On the other hand, if an LCA group G admits a simple quasicrystal, we prove that recent results of Meyer and Matei for the case of the Euclidean space R^n can be extended to G. More precisely, we prove that simple quasicrystals are universal sets of stable sampling and universal sets of stable interpolation in generalized Paley-Wiener spaces.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Agora, Elona; Antezana, Jorge Abel; Cabrelli, Carlos; Matei, Basarab; Existence of quasicrystals and universal stable sampling and interpolation in LCA groups; American Mathematical Society; Transactions Of The American Mathematical Society; 372; 7; 5-2019; 4647-4674
Compartir
Altmétricas