Artículo
Monitoring substrate and products in a bioprocess with FTIR spectroscopy coupled to artificial neural networks enhanced with a genetic-algorithm-based method for wavelength selection
Fecha de publicación:
01/2006
Editorial:
Elsevier Science
Revista:
Talanta
ISSN:
0039-9140
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
An experiment was developed as a simple alternative to existing analytical methods for the simultaneous quantitation of glucose (substrate) and glucuronic acid (main product) in the bioprocesses Kombucha by using FTIR spectroscopy coupled to multivariate calibration (partial least-squares, PLS-1 and artificial neural networks, ANNs). Wavelength selection through a novel ranked regions genetic algorithm (RRGA) was used to enhance the predictive ability of the chemometric models. Acceptable results were obtained by using the ANNs models considering the complexity of the sample and the speediness and simplicity of the method. The accuracy on the glucuronic acid determinationwas calculated by analysing spiked real fermentation samples (recoveries ca. 115%).
Palabras clave:
BIOPROCESS
,
MULTIVARIATE
,
CALIBRATION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Franco, Vanina Gisela; Perín, Juan C.; Mantovani, Victor Eduardo; Goicoechea, Hector Casimiro; Monitoring substrate and products in a bioprocess with FTIR spectroscopy coupled to artificial neural networks enhanced with a genetic-algorithm-based method for wavelength selection; Elsevier Science; Talanta; 68; 3; 1-2006; 1005-1012
Compartir
Altmétricas