Mostrar el registro sencillo del ítem
dc.contributor.author
Senilliani, Maria Gracia
dc.contributor.author
Bruno, Cecilia Ines
dc.contributor.author
Brassiolo, Miguel Marcelo
dc.date.available
2020-06-02T20:17:43Z
dc.date.issued
2019-06
dc.identifier.citation
Senilliani, Maria Gracia; Bruno, Cecilia Ines; Brassiolo, Miguel Marcelo; Site index for Prosopis alba plantations in the semi-arid chaco through mixed models; Universidade Federal de Lavras; Cerne; 25; 2; 6-2019; 195-202
dc.identifier.issn
0104-7760
dc.identifier.uri
http://hdl.handle.net/11336/106550
dc.description.abstract
The classification of sites through curves of Site Index allows to predict the yield of the planted forests at a certain age of the stand and to plan cultural treatments. The goal of this research was to compare linear and non-linear models of fixed effects vs. mixed non-linear models to estimate the site index in plantations of Prosopis alba var Griseb in the irrigated area of the province of Santiago del Estero, Argentina using the guide curve method. The data used comes from temporary plots, permanent plots and growth data from the stem analysis of selected individuals based on their greater growth in height within the sampled areas. The registered variable for the evaluation of the site was the dominant Height (HD), defined as the average height of the 100 thickest trees per hectare. Considering that the source of data from repeated measurements on the same subject implies the presence of correlation and/or heteroscedasticity, it was proposed to evaluate statistical models that allow to properly representing the structure of the variance-covariance matrix, improving the accuracy in the adjustment. From the analysis of the results, it appears that the models non-linear mixed models have had better performance in the adjustment of the Site Index than linear and non-linear models of fixed effects. The most accurate model (smallest AIC and BIC) in the site index estimation was the mixed non-linear regression model of 'Gompertz', with structure of composite symmetry correlation and exponential heteroscedasticity.v.25 n.2 2019
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Universidade Federal de Lavras
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Dominant height
dc.subject
Forestry
dc.subject
Site quality
dc.subject.classification
Silvicultura
dc.subject.classification
Agricultura, Silvicultura y Pesca
dc.subject.classification
CIENCIAS AGRÍCOLAS
dc.title
Site index for Prosopis alba plantations in the semi-arid chaco through mixed models
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-06-02T13:42:57Z
dc.journal.volume
25
dc.journal.number
2
dc.journal.pagination
195-202
dc.journal.pais
Brasil
dc.journal.ciudad
Minas Gerais
dc.description.fil
Fil: Senilliani, Maria Gracia. Universidad Nacional de Santiago del Estero. Facultad de Ciencias Forestales; Argentina
dc.description.fil
Fil: Bruno, Cecilia Ines. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma | Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma.; Argentina
dc.description.fil
Fil: Brassiolo, Miguel Marcelo. Universidad Nacional de Santiago del Estero. Facultad de Ciencias Forestales; Argentina
dc.journal.title
Cerne
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://cerne.ufla.br/site/index.php/CERNE/article/view/2035/1132
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1590/01047760201925022622
Archivos asociados