Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Sequential Monte Carlo with kernel embedded mappings: The mapping particle filter

Pulido, Manuel ArturoIcon ; Leeuwen, Peter Jan van
Fecha de publicación: 05/2019
Editorial: Academic Press Inc Elsevier Science
Revista: Journal of Computational Physics
ISSN: 0021-9991
e-ISSN: 1090-2716
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

In this work, a novel sequential Monte Carlo filter is introduced which aims at an efficient sampling of the state space. Particles are pushed forward from the prediction to the posterior density using a sequence of mappings that minimizes the Kullback-Leibler divergence between the posterior and the sequence of intermediate densities. The sequence of mappings represents a gradient flow based on the principles of local optimal transport. A key ingredient of the mappings is that they are embedded in a reproducing kernel Hilbert space, which allows for a practical and efficient Monte Carlo algorithm. The kernel embedding provides a direct means to calculate the gradient of the Kullback-Leibler divergence leading to quick convergence using well-known gradient-based stochastic optimization algorithms. Evaluation of the method is conducted in the chaotic Lorenz-63 system, the Lorenz-96 system, which is a coarse prototype of atmospheric dynamics, and an epidemic model that describes cholera dynamics. No resampling is required in the mapping particle filter even for long recursive sequences. The number of effective particles remains close to the total number of particles in all the sequence. Hence, the mapping particle filter does not suffer from sample impoverishment.
Palabras clave: STEIN GRADIENT DESCENT , SEQUENTIAL BAYES , SWAM OPTIMIZATION , OPTIMAL TRANSPORT , KERNEL EMBEDDING , PARTICLE FLOWS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.157Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/105970
URL: https://www.sciencedirect.com/science/article/pii/S0021999119304681
DOI: http://dx.doi.org/10.1016/j.jcp.2019.06.060
Colecciones
Articulos(IMIT)
Articulos de INST.DE MODELADO E INNOVACION TECNOLOGICA
Citación
Pulido, Manuel Arturo; Leeuwen, Peter Jan van; Sequential Monte Carlo with kernel embedded mappings: The mapping particle filter; Academic Press Inc Elsevier Science; Journal of Computational Physics; 396; 5-2019; 400-415
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES