Mostrar el registro sencillo del ítem

dc.contributor.author
Melo, Juan Ignacio  
dc.contributor.author
Maldonado, Alejandro Fabián  
dc.contributor.author
Aucar, Gustavo Adolfo  
dc.date.available
2020-05-27T12:32:08Z  
dc.date.issued
2020-02  
dc.identifier.citation
Melo, Juan Ignacio; Maldonado, Alejandro Fabián; Aucar, Gustavo Adolfo; Performance of the LRESC Model on top of DFT Functionals for Relativistic NMR Shielding Calculations; American Chemical Society; Journal of Chemical Information and Modeling; 60; 2; 2-2020; 722-730  
dc.identifier.issn
1549-9596  
dc.identifier.uri
http://hdl.handle.net/11336/105967  
dc.description.abstract
The linear response within the elimination of the small component model (LRESC) is an insightful and computationally efficient method for including relativistic effects on molecular properties like the nuclear magnetic shielding constants, spin-rotation constant, g-tensor, and electric field gradient of heavy atom containing molecules with atoms belonging up to the sixth row of the periodic table. One of its main advantages is its capacity to analyze the electronic origin of the different relativistic correcting terms. Until now, it was always applied on top of Hartree-Fock ground-state wave functions (LRESC/HF) to calculate and analyze NMR shieldings. In this work, we show the performance of the LRESC formalism on top of some density functional theory (DFT) functionals to compute tin shielding constants in SnX4 (X = H, F, Cl, Br, I) molecular systems. We analyze the performance of each LRESC/DFT scheme on reproducing the electronic mechanisms of the shieldings, taking as a benchmark the results of relativistic calculations at the RPA level of approach (4c/RPA). As in previous works, we divide the LRESC relativistic correcting terms into two groups: core-dependent and ligand-dependent contributions. It is shown here that core-dependent corrections are well-reproduced for the selected DFT functionals, but some differences arise in the ligand-dependent ones. We focus on the performance of different functionals, including the same electron correlation part but containing different amounts of HF exchange. The best results are obtained for the BHandHLYP functional (50% of HF exchange) and the worst for BLYP (0%). When the percentage of HF exchange increases, ligand-dependent contributions are better described, and the final LRESC/DFT results are closer to those obtained with LRESC/HF and 4c/RPA methods. The spin-orbit correction to the shielding constant is one of the main ligand-dependent contributions (there are two more) with total value depending on the amount of HF exchange included in the functional. When the amount of HF exchange decreases, the spin-orbit contribution becomes larger, overestimating the shielding constant even when nonrelativisitc DFT values are much smaller than the nonrelativistic HF ones, as it happens for the heaviest molecular system studied here (SnI4).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
LRESC  
dc.subject
DFT  
dc.subject
RELATIVISTIC EFFECTS  
dc.subject
MAGNETIC SHIELDING  
dc.subject
BASIS SETS  
dc.subject
CHEMICAL CALCULATIONS  
dc.subject
MOLECULES  
dc.subject
DENSITY FUNCTIONAL THEORY  
dc.subject
FOURIER TRANSFORMS  
dc.subject.classification
Física Atómica, Molecular y Química  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Performance of the LRESC Model on top of DFT Functionals for Relativistic NMR Shielding Calculations  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-05-19T18:53:12Z  
dc.journal.volume
60  
dc.journal.number
2  
dc.journal.pagination
722-730  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington DC  
dc.description.fil
Fil: Melo, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina  
dc.description.fil
Fil: Maldonado, Alejandro Fabián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina  
dc.description.fil
Fil: Aucar, Gustavo Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina  
dc.journal.title
Journal of Chemical Information and Modeling  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.jcim.9b00912  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jcim.9b00912