Artículo
Minimal curves in U(n) and Gl(n)+ with respect to the spectral and the trace norms
Fecha de publicación:
03/2020
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal of Mathematical Analysis and Applications
ISSN:
0022-247X
e-ISSN:
1096-0813
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Consider the Lie group of n×n complex unitary matrices U(n) endowed with the bi-invariant Finsler metric given by the spectral norm, ‖X‖_U=‖U⁎X‖∞=‖X‖∞ for any X tangent to a unitary operator U. Given two points in U(n), in general there exist infinitely many curves of minimal length. In this paper we provide a complete description of such curves and as a consequence we give an equivalent condition for uniqueness. Similar studies are done for the Grassmann manifolds. On the other hand, consider the cone of n×n positive invertible matrices Gl(n)+ endowed with the bi-invariant Finsler metric given by the trace norm, ‖X‖_1,A = ‖A^−1/2XA^−1/2‖_1 for any X tangent to A∈Gl(n)^+. In this context, also exist infinitely many curves of minimal length. In this paper we provide a complete description of such curves proving first a characterization of the minimal curves joining two Hermitian matrices X,Y∈H(n). The last description is also used to construct minimal paths in the group of unitary matrices U(n) endowed with the bi-invariant Finsler metric ‖X‖_1,U = ‖U⁎X‖_1=‖X‖_1 for any X tangent to U∈U(n). We also study the set of intermediate points in all the previous contexts.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Antezana, Jorge Abel; Ghiglioni, Eduardo Mario; Stojanoff, Demetrio; Minimal curves in U(n) and Gl(n)+ with respect to the spectral and the trace norms; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 483; 2; 3-2020; 1-26
Compartir
Altmétricas