Mostrar el registro sencillo del ítem

dc.contributor.author
Barraza, Jose Fernando  
dc.contributor.author
Grzywacz, Norberto M.  
dc.date.available
2020-05-22T15:41:26Z  
dc.date.issued
2008-10  
dc.identifier.citation
Barraza, Jose Fernando; Grzywacz, Norberto M.; Speed adaptation as Kalman filtering; Pergamon-Elsevier Science Ltd; Vision Research; 48; 23-24; 10-2008; 2485-2491  
dc.identifier.issn
0042-6989  
dc.identifier.uri
http://hdl.handle.net/11336/105752  
dc.description.abstract
If the purpose of adaptation is to fit sensory systems to different environments, it may implement an optimization of the system. What the optimum is depends on the statistics of these environments. Therefore, the system should update its parameters as the environment changes. A Kalman-filtering strategy performs such an update optimally by combining current estimations of the environment with those from the past. We investigate whether the visual system uses such a strategy for speed adaptation. We performed a matching-speed experiment to evaluate the time course of adaptation to an abrupt velocity change. Experimental results are in agreement with Kalman-modeling predictions for speed adaptation. When subjects adapt to a low speed and it suddenly increases, the time course of adaptation presents two phases, namely, a rapid decrease of perceived speed followed by a slower phase. In contrast, when speed changes from fast to slow, adaptation presents a single phase. In the Kalman-model simulations, this asymmetry is due to the prevalence of low speeds in natural images. However, this asymmetry disappears both experimentally and in simulations when the adapting stimulus is noisy. In both transitions, adaptation now occurs in a single phase. Finally, the model also predicts the change in sensitivity to speed discrimination produced by the adaptation.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
VISUAL MOTION  
dc.subject
MOTION ADAPTATION  
dc.subject
KALMAN FILTERING  
dc.subject
SPEED PERCEPTION  
dc.subject
SPEED DISCRIMINATION  
dc.subject
BAYESIAN MODEL  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Speed adaptation as Kalman filtering  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-03-11T18:33:31Z  
dc.identifier.eissn
1878-5646  
dc.journal.volume
48  
dc.journal.number
23-24  
dc.journal.pagination
2485-2491  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Barraza, Jose Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Investigación en Luz, Ambiente y Visión. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Instituto de Investigación en Luz, Ambiente y Visión; Argentina  
dc.description.fil
Fil: Grzywacz, Norberto M.. University of Southern California; Estados Unidos  
dc.journal.title
Vision Research  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.visres.2008.08.011  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0042698908004173