Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Diffuse and localized failure predictions of Perzyna viscoplastic models for cohesive-frictional materials

Etse, Jose GuillermoIcon ; Carosio, A.
Fecha de publicación: 12/2002
Editorial: Planta Piloto de Ingeniería Química
Revista: Latin American Applied Research
ISSN: 0327-0793
e-ISSN: 1851-8796
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de los Materiales

Resumen

Viscoplastic constitutive formulations are characterized by instantaneous tangent operators which do no exhibit degradation from the elastic properties. As a consequence Viscoplastic materials descriptions were often advocated to retrofit the shortcomings of the inviscid elastoplastic formulations such as loss of stability and loss of ellipticity. However, when the time integration of Viscoplastic material processes is considered within finite time increments, there exists an algorithmic tangent operator which may lead to loss of stability and loss of ellipticity similar to rate-independent elastoplastic materials. The algorithmic tangent operator follows from the consistent linearization process. Therefore, the numerical method considered for the time integration of the constitutive equations plays a fundamental role in failure analysis of Viscoplastic materials. This paper focuses in the performance of the conditions form diffuse and localized failure of two Perzyna-type Viscoplastic models, one of them based on the classical formulation and the other one based on a new proposal by Ponthot (1995) which includes a constrain condition representing a rate dependent generalization of the plasticity`s yield condition. Application of Backward Euler method form time integration of both Perzyna formulations leads to quite different form of the consistent tangent material operators. These stiffness tensors are obtained for Perzyna generalizations of the so called Extended Leon Model which is a fracture energy-based elastoplastic constitutive model for concrete. The results included in the paper illustrate the strong differences between the failure predictions of both Perzyna-type Viscoplastic formulations. In this regard, the classical formulation is unable to reproduce the predictions of the inviscid model when the viscosity approaches zero. This case leads to very small values of both failures indicators and their performances are characterized by strong oscillations and even discontinuities. On the other hand the so-called continuous formulation is associated with algorithmic tangent moduli which signals a smooth transition from the elastic operator to the elastoplastic algorithmic one, when the viscosity varies from very large to very small values.
Palabras clave: VISCOPLASTICITY , FAILURE , LOCALIZATION , TANGENT
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 574.7Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/105137
URL: http://www.laar.plapiqui.edu.ar/OJS/public/site/volumens/indexes/artic_v3201/32_
Colecciones
Articulos(CCT - NOA SUR)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - NOA SUR
Citación
Etse, Jose Guillermo; Carosio, A.; Diffuse and localized failure predictions of Perzyna viscoplastic models for cohesive-frictional materials; Planta Piloto de Ingeniería Química; Latin American Applied Research; 32; 12-2002; 21-31
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES