Artículo
Multiple PLDs Required for High Salinity and Water Deficit Tolerance in Plants
Bargmann, Bastiaan O. R.; Laxalt, Ana Maria
; Riet, Bas ter; van Schooten, Bas; Merquiol, Emmanuelle; Testerink, Christa; Haring, Michel A.; Bartels, Dorothea; Munnik, Teun
Fecha de publicación:
11/2008
Editorial:
Oxford University Press
Revista:
Plant And Cell Physiology
ISSN:
0032-0781
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
High salinity and drought have received much attention because they severely affect crop production worldwide. Analysis and comprehension of the plant's response to excessive salt and dehydration will aid in the development of stress-tolerant crop varieties. Signal transduction lies at the basis of the response to these stresses, and numerous signaling pathways have been implicated. Here, we provide further evidence for the involvement of phospholipase D (PLD) in the plant's response to high salinity and dehydration. A tomato ( Lycopersicon esculentum ) α -class PLD, LePLD α 1, is transcriptionally up-regulated and activated in cell suspension cultures treated with salt. Gene silencing revealed that this PLD is indeed involved in the salt-induced phosphatidic acid production, but not exclusively. Genetically modifi ed tomato plants with reduced LePLD α 1 protein levels did not reveal altered salt tolerance. In Arabidopsis ( Arabidopsis thaliana ), both AtPLD α 1 and AtPLD δ were found to be activated in response to salt stress. Moreover, pldα1 and pldδ single and double knock-out mutants exhibited enhanced sensitivity to high salinity stress in a plate assay. Furthermore, we show that both PLDs are activated upon dehydration and the knock-out mutants are hypersensitive to hyperosmotic stress, displaying strongly reduced growth.
Palabras clave:
phospholipase D
,
salt stress
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IIB)
Articulos de INSTITUTO DE INVESTIGACIONES BIOLOGICAS
Articulos de INSTITUTO DE INVESTIGACIONES BIOLOGICAS
Citación
Bargmann, Bastiaan O. R.; Laxalt, Ana Maria; Riet, Bas ter; van Schooten, Bas; Merquiol, Emmanuelle; et al.; Multiple PLDs Required for High Salinity and Water Deficit Tolerance in Plants; Oxford University Press; Plant And Cell Physiology; 50; 1; 11-2008; 78-89
Compartir
Altmétricas