Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A versatile strategy for achieving the second-order advantage when applying different artificial neural networks to non-linear second-order data: Unfolded principal component analysis/residual bilinearization

Garcia Reiriz, Alejandro GabrielIcon ; Damiani, Patricia Cecilia; Culzoni, Maria JuliaIcon ; Goicoechea, Hector CasimiroIcon ; Olivieri, Alejandro CesarIcon
Fecha de publicación: 05/2008
Editorial: Elsevier Science
Revista: Chemometrics and Intelligent Laboratory Systems
ISSN: 0169-7439
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

Second-order instrumental signals showing a non-linear behaviour with respect to analyte concentration can still be adequately processed in order to achieve the important second-order advantage. The combination of unfolded principal component analysis with residual bilinearization, followed by application of a variety of neural network models, allows one to obtain the second-order advantage. While principal component analysis models the training data, residual bilinearization models the contribution of the potential interferents which may be present in the test samples. Neural networks such as multilayer perceptron, radial basis functions and support vector machines, are all able to model the non-linear relationship between analyte concentrations and sample principal component scores. Three different experimental systems have been analyzed, all requiring the second-order advantage: 1) pH-UV absorbance matrices for the determination of two active principles in pharmaceutical preparations, 2) fluorescence excitation-emission matrices for the determination of polycyclic aromatic hydrocarbons, and 3) UV-induced fluorescence excitation-emission matrices for the determination of amoxicillin in the presence of salicylate. In all cases, reasonably accurate predictions can be made with the proposed techniques, which cannot be reached using traditional methods for processing second-order data.
Palabras clave: Second-order advantage , Residual bilinearization , Multilayer perceptron networks , Radial basis functions , Support vector machines
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 560.5Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/105102
DOI: http://dx.doi.org/10.1016/j.chemolab.2007.12.002
URL: https://www.sciencedirect.com/science/article/abs/pii/S0169743907002377
Colecciones
Articulos(IQUIR)
Articulos de INST.DE QUIMICA ROSARIO
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Garcia Reiriz, Alejandro Gabriel; Damiani, Patricia Cecilia; Culzoni, Maria Julia; Goicoechea, Hector Casimiro; Olivieri, Alejandro Cesar; A versatile strategy for achieving the second-order advantage when applying different artificial neural networks to non-linear second-order data: Unfolded principal component analysis/residual bilinearization; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 92; 1; 5-2008; 61-70
Compartir
Altmétricas
 
Estadísticas
Visualizaciones: 78
Descargas: 23

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • Sound Cloud

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

Ministerio
https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES