Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Array of Multilayer Perceptrons with No-class Resampling Training for Face Recognition

Capello, D.; Martínez, César Ernesto; Milone, Diego HumbertoIcon ; Stegmayer, GeorginaIcon
Fecha de publicación: 12/2009
Editorial: AEPIA
Revista: Inteligencia Artificial
ISSN: 1137-3601
e-ISSN: 1988-3064
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Sistemas y Comunicaciones

Resumen

A face recognition (FR) problem involves the face detection, representation and classification steps. Once a face is located in an image, it has to be represented through a feature extraction process, for later performing a proper face classication task. The most widely used approach for feature extraction is the eigenfaces method, where an eigenspace is established from the image training samples using principal components analysis.In the classification phase, an input face is projected to the obtained eigenspace and classified by an appropriate classifier. Neural network classifiers based on multilayer perceptron models have proven to be well suited to this task. This paper presents an array of multilayer perceptron neural networks trained with a novel no-class resampling strategy which takes into account the balance problem between class and no-class examples andincreases the generalization capabilities. The proposed model is compared against a classical multilayer perceptron classifier for face recognition over the AT&T database of faces, obtaining results that show an improvement over the classification rates of a classical classifier.
Palabras clave: Multilayer Perceptron array , No-class Resampling training algorithm , Face Recognition
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 383.4Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/104790
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Capello, D.; Martínez, César Ernesto; Milone, Diego Humberto; Stegmayer, Georgina; Array of Multilayer Perceptrons with No-class Resampling Training for Face Recognition; AEPIA; Inteligencia Artificial; 3; 44; 12-2009; 5-13
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES