Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Parametric and non-parametric probabilistic approaches in the mechanics of thin-walled composite curved beams

Sampaio, Rubens; Piovan, Marcelo TulioIcon
Fecha de publicación: 05/2015
Editorial: Elsevier
Revista: Thin-walled Structures
ISSN: 0263-8231
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Mecánica Aplicada

Resumen

In this paper we perform a quantification of the uncertainty propagation of the dynamics of slender initially curved structures constructed with fiber reinforced composite materials. Depending on the manufacturing process, composite materials may have deviations with respect to the expected response, often called nominal response in a deterministic sense. The manufacturing aspects lead to uncertainty in the structural response associated with constituent proportions, material and/or geometric parameters among others. Another aspect of uncertainty that can be sensitive in composite structures is the mathematical model that represents the mechanics of the structural member, that is: the assumptions and type of hypotheses invoked reflect the most relevant aspects of the physics of a structure, however in some circumstances these hypotheses are not enough, and cannot represent properly the mechanics of the structure. Uncertainties should be considered in a structural system in order to improve the predictability of a given modeling scheme. There are two approaches to evaluate the propagation of uncertainties in structural models: the parametric probabilistic approach and the non-parametric probabilistic approach. In the parametric, one quantifies the uncertainty of given parameters (such as variation of the angles of fiber reinforcement and material constituents) by associating random variables to them. In the non-parametric, the propagation of uncertainty is quantified by considering uncertain the matrices of the whole system. In this study a shear deformable model of composite curved thinwalled beams is employed as the mean or expected model. The probabilistic model is constructed by adopting random variables for the uncertain entities (parameters or matrices) of the model. The probability density functions of the random entities are derived appealing to the maximum entropy principle under given constraints. Once the probabilistic model is discretized in the context of the finite element method, the Monte Carlo method is employed to perform the simulations. Then the statistics of the simulations is evaluated and the parametric and non-parametric approaches are compared.
Palabras clave: Uncertainties Quantification , Composite Curved Beams , Dynamics , Flexible Structures
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.054Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/10475
URL: http://www.sciencedirect.com/science/article/pii/S0263823114003826
DOI: http://dx.doi.org/10.1016/j.tws.2014.12.018
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Citación
Sampaio, Rubens; Piovan, Marcelo Tulio; Parametric and non-parametric probabilistic approaches in the mechanics of thin-walled composite curved beams; Elsevier; Thin-walled Structures; 90; 5-2015; 95-106
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES