Mostrar el registro sencillo del ítem
dc.contributor.author
Schlotthauer, Gaston
dc.contributor.author
Torres, Maria Eugenia
dc.contributor.author
Rufiner, Hugo Leonardo
dc.contributor.author
Flandrin, Patrick
dc.date.available
2020-05-08T19:46:25Z
dc.date.issued
2009-09
dc.identifier.citation
Schlotthauer, Gaston; Torres, Maria Eugenia; Rufiner, Hugo Leonardo; Flandrin, Patrick; EMD of Gaussian White Noise: Effects of Signal Length and Sifting Number on the Statistical Properties of Intrinsic Mode Functions; World Scientific Publishing; Advances in Adaptive Data Analysis; 1; 4; 9-2009; 517-527
dc.identifier.issn
1793-7175
dc.identifier.uri
http://hdl.handle.net/11336/104667
dc.description.abstract
This work presents a discussion on the probability density function of Intrinsic Mode Functions (IMFs) provided by the Empirical Mode Decomposition of Gaussian white noise, based on experimental simulations. The influence on the probability density functions of the data length and of the maximum allowed number of iterations is analyzed by means of kernel smoothing density estimations. The obtained results are confirmed by statistical normality tests indicating that the IMFs have non-Gaussian distributions. Our study also indicates that large data length and high number of iterations produce multimodal distributions in all modes.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
World Scientific Publishing
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
EMPIRICAL MODE DESCOMPOSITION
dc.subject
INTRINSIC MODE FUNTION
dc.subject
GAUSSIAN WHITE NOISE
dc.subject
SIFTING
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
EMD of Gaussian White Noise: Effects of Signal Length and Sifting Number on the Statistical Properties of Intrinsic Mode Functions
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-04-28T13:09:01Z
dc.identifier.eissn
1793-5369
dc.journal.volume
1
dc.journal.number
4
dc.journal.pagination
517-527
dc.journal.pais
Singapur
dc.journal.ciudad
Singapore
dc.description.fil
Fil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Torres, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina
dc.description.fil
Fil: Rufiner, Hugo Leonardo. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Flandrin, Patrick. École Normale Supérieure de Lyon; Francia
dc.journal.title
Advances in Adaptive Data Analysis
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S1793536909000217
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1142/S1793536909000217
Archivos asociados