Mostrar el registro sencillo del ítem
dc.contributor.author
Cappellin, Luca
dc.contributor.author
Aprea, Eugenio
dc.contributor.author
Granitto, Pablo Miguel
dc.contributor.author
Wehrens, Ron
dc.contributor.author
Soukoulis, Christos
dc.contributor.author
Viola, Roberto
dc.contributor.author
Mark, Tilmann D.
dc.contributor.author
Gasperi, Flavia
dc.contributor.author
Biasioli, Franco
dc.date.available
2020-05-07T19:14:32Z
dc.date.issued
2012-05
dc.identifier.citation
Cappellin, Luca; Aprea, Eugenio; Granitto, Pablo Miguel; Wehrens, Ron; Soukoulis, Christos; et al.; Linking GC-MS and PTR-TOF-MS fingerprints of food samples; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 118; 5-2012; 301-307
dc.identifier.issn
0169-7439
dc.identifier.uri
http://hdl.handle.net/11336/104541
dc.description.abstract
Recently the first applications in food science and technology of the newly available volatile organic compound (VOC) detection technique proton transfer reaction‐mass spectrometry, coupled with a time of flight mass analyzer (PTR-TOF-MS), have been published. In comparison with standard techniques such as GC-MS, PTR-TOF-MS has the remarkable advantage of being extremely fast but has the drawback that compound identification is more challenging and often not possible without further information. In order to better exploit and understand the analytical information entangled in the PTR-TOF-MS fingerprint and to link it with SPME/GC-MS analyses we employed two multivariate calibration methods, PLS and the more recent LASSO. We show that, while in some cases it is sufficient to consider a single PTR-TOF-MS peak in order to predict the intensity of a SPME/GC-MS peak, in general a multivariate approach is needed. We compare the performances of PLS and LASSO in terms of prediction capabilities and interpretability of the model coefficients and conclude that LASSO is more suitable for this problem. As case study, we compared GC and PTR-MS data for different matrices, namely olive oil and grana cheese.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
PLS
dc.subject
LASSO
dc.subject
PROTON TRANSFER REACTION-MASS SPECTROMETRY
dc.subject
TIME-OF-FLIGHT
dc.subject
PREDICTION
dc.subject
MULTIVARIATE CORRELATION
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Linking GC-MS and PTR-TOF-MS fingerprints of food samples
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-04-23T21:42:48Z
dc.journal.volume
118
dc.journal.pagination
301-307
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Cappellin, Luca. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; Italia. Universidad de Innsbruck; Austria
dc.description.fil
Fil: Aprea, Eugenio. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; Italia
dc.description.fil
Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
dc.description.fil
Fil: Wehrens, Ron. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; Italia
dc.description.fil
Fil: Soukoulis, Christos. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; Italia
dc.description.fil
Fil: Viola, Roberto. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; Italia
dc.description.fil
Fil: Mark, Tilmann D.. Universidad de Innsbruck; Austria
dc.description.fil
Fil: Gasperi, Flavia. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; Italia
dc.description.fil
Fil: Biasioli, Franco. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; Italia
dc.journal.title
Chemometrics and Intelligent Laboratory Systems
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.chemolab.2012.05.008
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0169743912001219
Archivos asociados