Mostrar el registro sencillo del ítem

dc.contributor.author
Cappellin, Luca  
dc.contributor.author
Aprea, Eugenio  
dc.contributor.author
Granitto, Pablo Miguel  
dc.contributor.author
Wehrens, Ron  
dc.contributor.author
Soukoulis, Christos  
dc.contributor.author
Viola, Roberto  
dc.contributor.author
Mark, Tilmann D.  
dc.contributor.author
Gasperi, Flavia  
dc.contributor.author
Biasioli, Franco  
dc.date.available
2020-05-07T19:14:32Z  
dc.date.issued
2012-05  
dc.identifier.citation
Cappellin, Luca; Aprea, Eugenio; Granitto, Pablo Miguel; Wehrens, Ron; Soukoulis, Christos; et al.; Linking GC-MS and PTR-TOF-MS fingerprints of food samples; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 118; 5-2012; 301-307  
dc.identifier.issn
0169-7439  
dc.identifier.uri
http://hdl.handle.net/11336/104541  
dc.description.abstract
Recently the first applications in food science and technology of the newly available volatile organic compound (VOC) detection technique proton transfer reaction‐mass spectrometry, coupled with a time of flight mass analyzer (PTR-TOF-MS), have been published. In comparison with standard techniques such as GC-MS, PTR-TOF-MS has the remarkable advantage of being extremely fast but has the drawback that compound identification is more challenging and often not possible without further information. In order to better exploit and understand the analytical information entangled in the PTR-TOF-MS fingerprint and to link it with SPME/GC-MS analyses we employed two multivariate calibration methods, PLS and the more recent LASSO. We show that, while in some cases it is sufficient to consider a single PTR-TOF-MS peak in order to predict the intensity of a SPME/GC-MS peak, in general a multivariate approach is needed. We compare the performances of PLS and LASSO in terms of prediction capabilities and interpretability of the model coefficients and conclude that LASSO is more suitable for this problem. As case study, we compared GC and PTR-MS data for different matrices, namely olive oil and grana cheese.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
PLS  
dc.subject
LASSO  
dc.subject
PROTON TRANSFER REACTION-MASS SPECTROMETRY  
dc.subject
TIME-OF-FLIGHT  
dc.subject
PREDICTION  
dc.subject
MULTIVARIATE CORRELATION  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Linking GC-MS and PTR-TOF-MS fingerprints of food samples  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-04-23T21:42:48Z  
dc.journal.volume
118  
dc.journal.pagination
301-307  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Cappellin, Luca. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; Italia. Universidad de Innsbruck; Austria  
dc.description.fil
Fil: Aprea, Eugenio. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; Italia  
dc.description.fil
Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina  
dc.description.fil
Fil: Wehrens, Ron. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; Italia  
dc.description.fil
Fil: Soukoulis, Christos. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; Italia  
dc.description.fil
Fil: Viola, Roberto. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; Italia  
dc.description.fil
Fil: Mark, Tilmann D.. Universidad de Innsbruck; Austria  
dc.description.fil
Fil: Gasperi, Flavia. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; Italia  
dc.description.fil
Fil: Biasioli, Franco. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; Italia  
dc.journal.title
Chemometrics and Intelligent Laboratory Systems  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.chemolab.2012.05.008  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0169743912001219