Artículo
Bifurcation theory applied to the analysis of power systems
Fecha de publicación:
12/2008
Editorial:
Unión Matemática Argentina
Revista:
Revista de la Unión Matemática Argentina
ISSN:
0041-6932
e-ISSN:
1669-9637
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper, several nonlinear phenomena found in the study of power system networks are described in the context of bifurcation theory. Toward this end, a widely studied 3-bus power system model is considered. The mechanisms leading to static and dynamic bifurcations of equilibria as well as a cascade of period doubling bifurcations of periodic orbits are investigated. It is shown that the cascade verifies the Feigenbaum’s universal theory. Finally, a two parameter bifurcation analysis reveals the presence of a Bogdanov-Takens codimension-two bifurcation acting as an organizing center for the dynamics. In addition, evidence on the existence of a complex global phenomena involving homoclinic orbits and a period doubling cascade is included.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IIIE)
Articulos de INST.DE INVEST.EN ING.ELECTRICA "A.DESAGES"
Articulos de INST.DE INVEST.EN ING.ELECTRICA "A.DESAGES"
Citación
Revel, Gustavo; Alonso, Diego; Moiola, Jorge Luis; Bifurcation theory applied to the analysis of power systems; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 49; 1; 12-2008; 1-14
Compartir