Mostrar el registro sencillo del ítem

dc.contributor.author
Andruchow, Esteban  
dc.contributor.author
Varela, Alejandro  
dc.date.available
2020-05-06T18:48:31Z  
dc.date.issued
2005-11  
dc.identifier.citation
Andruchow, Esteban; Varela, Alejandro; Riemannian geometry of finite rank positive operators; Elsevier Science; Differential Geometry and its Applications; 23; 1; 11-2005; 305-326  
dc.identifier.issn
0926-2245  
dc.identifier.uri
http://hdl.handle.net/11336/104393  
dc.description.abstract
A riemannian metric is introduced in the infinite dimensional manifold Σ_n of positive operators with rank n<∞ on a Hilbert space H.  The geometry of this manifold is studied and related to the geometry of the submanifolds Σ_p$ of positive operators with range equal to the range of a projection p (rank of p =n), and P_p of selfadjoint projections in the connected component of p. It is shown that these spaces are complete in the geodesic distance.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
POSITIVE OPERATOR  
dc.subject
FINITE RANK PROJECTION  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Riemannian geometry of finite rank positive operators  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-04-28T16:14:25Z  
dc.journal.volume
23  
dc.journal.number
1  
dc.journal.pagination
305-326  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.description.fil
Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.journal.title
Differential Geometry and its Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.difgeo.2005.06.004  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0926224505000604