Mostrar el registro sencillo del ítem
dc.contributor.author
Andruchow, Esteban
dc.contributor.author
Varela, Alejandro
dc.date.available
2020-05-06T18:48:31Z
dc.date.issued
2005-11
dc.identifier.citation
Andruchow, Esteban; Varela, Alejandro; Riemannian geometry of finite rank positive operators; Elsevier Science; Differential Geometry and its Applications; 23; 1; 11-2005; 305-326
dc.identifier.issn
0926-2245
dc.identifier.uri
http://hdl.handle.net/11336/104393
dc.description.abstract
A riemannian metric is introduced in the infinite dimensional manifold Σ_n of positive operators with rank n<∞ on a Hilbert space H. The geometry of this manifold is studied and related to the geometry of the submanifolds Σ_p$ of positive operators with range equal to the range of a projection p (rank of p =n), and P_p of selfadjoint projections in the connected component of p. It is shown that these spaces are complete in the geodesic distance.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
POSITIVE OPERATOR
dc.subject
FINITE RANK PROJECTION
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Riemannian geometry of finite rank positive operators
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-04-28T16:14:25Z
dc.journal.volume
23
dc.journal.number
1
dc.journal.pagination
305-326
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.description.fil
Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.journal.title
Differential Geometry and its Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.difgeo.2005.06.004
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0926224505000604
Archivos asociados