Artículo
Partial Characterization of Graphs Having a Single Large Laplacian Eigenvalue
Allem, L. Emilio; Cafure, Antonio Artemio
; Dratman, Ezequiel
; Grippo, Luciano Norberto
; Safe, Martin Dario
; Trevisan, Vilmar
Fecha de publicación:
12/2018
Editorial:
Electronic Journal Of Combinatorics
Revista:
Electronic Journal Of Combinatorics, The
ISSN:
1077-8926
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The parameter σ(G) of a graph G stands for the number of Laplacian eigenvalues greater than or equal to the average degree of G. In this work, we address the problem of characterizing those graphs G having σ(G) = 1. Our conjecture is that these graphs are stars plus a (possible empty) set of isolated vertices. We establish a link between σ(G) and the number of anticomponents of G. As a by-product, we present some results which support the conjecture, by restricting our analysis to cographs, forests, and split graphs.
Palabras clave:
Laplacian Matrix
,
Graphs
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Allem, L. Emilio; Cafure, Antonio Artemio; Dratman, Ezequiel; Grippo, Luciano Norberto; Safe, Martin Dario; et al.; Partial Characterization of Graphs Having a Single Large Laplacian Eigenvalue; Electronic Journal Of Combinatorics; Electronic Journal Of Combinatorics, The; 25; 4; 12-2018; 1-10
Compartir
Altmétricas