Artículo
Salt induced asymmetry in membrane simulations by partial restriction of ionic motion
Fecha de publicación:
05/2009
Editorial:
American Institute of Physics
Revista:
Journal of Chemical Physics
ISSN:
0021-9606
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The specific ionic composition differs considerably at both sides of biological membranes and specific lipid/electrolyte interactions may be essential for their structure, stability and function. Hence, explicit consideration of the ionic asymmetry is important to achieve an accurate description of lipid bilayers. Molecular dynamics simulations have proven to be a reliable tool to study biomembranes at atomic detail. Nevertheless, the use of periodic boundary conditions allows ions to diffuse rapidly and reach both sides of the bilayer. Therefore, ad hoc simulation schemes have to be applied to take into account ionic asymmetry. In this work we present a simple implementation to overcome this problem. A more realistic description of the biomembranes can be achieved by partially restricting the ionic motion in the direction normal to the membrane within a region of the space near to only one of the leaflets. This creates two different situations: one leaflet is highly exposed to ions while the second one can be completely or partially depleted of them. Comparison between this new method and control simulations performed using a previously proposed approach consisting of a double-membrane setup yielded an excellent agreement with a speed-up of nearly 60%. The performance of the method with different ionic species is explored and remaining limitations are examined.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Herrera, Fernando Enrique; Pantano Gutierrez, Sergio Fabian; Salt induced asymmetry in membrane simulations by partial restriction of ionic motion; American Institute of Physics; Journal of Chemical Physics; 130; 19; 5-2009; 195195-195195
Compartir
Altmétricas