Artículo
Chaos prediction and bifurcation analysis in control engineering
Alonso, Diego
; Calandrini, Guillermo Luis; Berns, Daniel Walther; Paolini, Eduardo Emilio; Moiola, Jorge Luis
Fecha de publicación:
12/2001
Editorial:
Planta Piloto de Ingeniería Química
Revista:
Latin American Applied Research
ISSN:
0327-0793
e-ISSN:
1851-8796
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper, two different methods to compute the period-doubling route to chaos (or Feigenbaum chaos) in nonlinear systems are presented. The first one is a semi-analytical procedure, based on a symbolic calculation of an approximate monodromy matrix. The second one takes advantage of software packages for continuation of periodic solutions. Both procedures are used to analyze Chua´s circuit. The second method is also applied to the Rössler system and one of the chaotic systems of Sprott. In all three cases, several period-doubling bifurcation points in the parameter space are detected, allowing to compute a sequence of values supposedly converging to Feigenbaum´s constant. This "experimental´´ computer verification agrees with experiments performed by other researchers in real systems. This material has been used in final projects in a graduate course in dynamical systems.
Palabras clave:
PERIOD-DOUBLING BIFURCATIONS
,
FEIGENBAUM´S CONSTANT
,
CHAOTIC SYSTEMS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IIIE)
Articulos de INST.DE INVEST.EN ING.ELECTRICA "A.DESAGES"
Articulos de INST.DE INVEST.EN ING.ELECTRICA "A.DESAGES"
Citación
Alonso, Diego; Calandrini, Guillermo Luis; Berns, Daniel Walther; Paolini, Eduardo Emilio; Moiola, Jorge Luis; Chaos prediction and bifurcation analysis in control engineering; Planta Piloto de Ingeniería Química; Latin American Applied Research; 31; 3; 12-2001; 185-192
Compartir