Mostrar el registro sencillo del ítem
dc.contributor.author
Palopoli, Nicolás
dc.contributor.author
Lanzarotti, Esteban Omar
dc.contributor.author
Parisi, Gustavo Daniel
dc.date.available
2020-04-30T15:52:09Z
dc.date.issued
2013-07
dc.identifier.citation
Palopoli, Nicolás; Lanzarotti, Esteban Omar; Parisi, Gustavo Daniel; BeEP Server: using evolutionary information for quality assessment of protein structure models; Oxford University Press; Nucleic Acids Research; 41; W1; 7-2013; W398-W405
dc.identifier.issn
0305-1048
dc.identifier.uri
http://hdl.handle.net/11336/104016
dc.description.abstract
The BeEP Server (http://www.embnet.qb.fcen.uba.ar/embnet/beep.php) is an online resource aimed to help in the endgame of protein structure prediction. It is able to rank submitted structural models of a protein through an explicit use of evolutionary information, a criterion differing from structural or energetic considerations commonly used in other assessment programs. The idea behind BeEP (Best Evolutionary Pattern) is to benefit from the substitution pattern derived from structural constraints present in a set of homologous proteins adopting a given protein conformation. The BeEP method uses a model of protein evolution that takes into account the structure of a protein to build site-specific substitution matrices. The suitability of these substitution matrices is assessed through maximum likelihood calculations from which position-specific and global scores can be derived. These scores estimate how well the structural constraints derived from each structural model are represented in a sequence alignment of homologous proteins. Our assessment on a subset of proteins from the Critical Assessment of techniques for protein Structure Prediction (CASP) experiment has shown that BeEP is capable of discriminating the models and selecting one or more native-like structures. Moreover, BeEP is not explicitly parameterized to find structural similarities between models and given targets, potentially helping to explore the conformational ensemble of the native state.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Oxford University Press
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
STRUCTURAL BIOINFORMATICS
dc.subject
PROTEIN STRUCTURE VALIDATION
dc.subject
EVOLUTIONARY INFORMATION
dc.subject
WEB SERVER
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
BeEP Server: using evolutionary information for quality assessment of protein structure models
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-04-28T14:11:37Z
dc.identifier.eissn
1362-4962
dc.journal.volume
41
dc.journal.number
W1
dc.journal.pagination
W398-W405
dc.journal.pais
Reino Unido
dc.journal.ciudad
Oxford
dc.description.fil
Fil: Palopoli, Nicolás. University of Southampton; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina
dc.description.fil
Fil: Lanzarotti, Esteban Omar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Parisi, Gustavo Daniel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Nucleic Acids Research
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://nar.oxfordjournals.org/content/41/W1/W398
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/nar/gkt453
Archivos asociados