Artículo
Efficient non homogeneous CFAR processing
Fecha de publicación:
01/2011
Editorial:
Planta Piloto de Ingeniería Química
Revista:
Latin American Applied Research
ISSN:
0327-0793
e-ISSN:
1851-8796
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this work a new radar detection method is proposed, the Cell Average Neural Network Constant false Alarm Rate (CANN CFAR), which can be used with Weibull distributed non homogeneous radar returns. This processor combines Maximum Likelihood estimation method with Neural Networks for the clutter parameter estimation, resolving homogeneity and determining clutter bank transition points and size. To characterize its performance, probability of detection is evaluated using Monte Carlo simulations and compared to other efficient CFAR schemes. As a result, CANN CFAR detection has better performance than conventional CFAR processors, especially when detecting targets located near clutter heterogeneities. An additional advantage of the proposed technique is its efficiency when determining clutter transition points, bank size and threshold setting. This efficiency translates in lower computation time than other CFAR algorithms, mostly considering real time processing.
Palabras clave:
NEURAL NETWORKS
,
CFAR
,
CLUTTER
,
DETECTION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IIIE)
Articulos de INST.DE INVEST.EN ING.ELECTRICA "A.DESAGES"
Articulos de INST.DE INVEST.EN ING.ELECTRICA "A.DESAGES"
Citación
Gálvez, Nélida Beatriz; Cousseau, Juan Edmundo; Pasciaroni, Jose Luis; Agamennoni, Osvaldo Enrique; Efficient non homogeneous CFAR processing; Planta Piloto de Ingeniería Química; Latin American Applied Research; 41; 1; 1-2011; 1-9
Compartir