Mostrar el registro sencillo del ítem

dc.contributor.author
Cipolletti, Marina Paola  
dc.contributor.author
Genchi, Sibila Andrea  
dc.contributor.author
Delrieux, Claudio Augusto  
dc.contributor.author
Perillo, Gerardo Miguel E.  
dc.date.available
2020-04-28T22:22:12Z  
dc.date.issued
2019-06-06  
dc.identifier.citation
Cipolletti, Marina Paola; Genchi, Sibila Andrea; Delrieux, Claudio Augusto; Perillo, Gerardo Miguel E.; An Approach for Estimating Border Length in Marine Coasts From MODIS Data; Institute of Electrical and Electronics Engineers; Ieee Geoscience and Remote Sensing Letters; 17; 1; 6-6-2019; 8-12  
dc.identifier.issn
1545-598X  
dc.identifier.uri
http://hdl.handle.net/11336/103852  
dc.description.abstract
The development of data approximation methods from coarse spatial resolution images is gaining increasing interest in the research community. This letter aims to extend and validate a developed methodology for estimating border length of diverse marine coastlines from coarse spatial resolution images like Moderate Resolution Imaging Spectrometer (MODIS) by using fractal attributes and its error behavior. The accuracy of MODIS-based estimates and the reliability of the method to predict coastline length measurements by extrapolation was evaluated using Landsat 8 over different coastline types. It is shown that with our method, 250-m MODIS images are adequate for estimating coastline lengths with a precision equivalent to standard linear measurements performed on 30-m resolution imagery, with average errors between 3% and 18% for straight and complex coasts, respectively. These results indicate that an underestimation error, occurring in rugged and complex coasts, is more frequent and significant than overestimation occurring in smooth and straight coasts.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
COASTLINE LENGTH  
dc.subject
MODIS  
dc.subject
FRACTAL ANALYSIS  
dc.subject
GEOGRAPHICAL MEASUREMENTS  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
An Approach for Estimating Border Length in Marine Coasts From MODIS Data  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-02-26T19:54:59Z  
dc.journal.volume
17  
dc.journal.number
1  
dc.journal.pagination
8-12  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
New York  
dc.description.fil
Fil: Cipolletti, Marina Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina  
dc.description.fil
Fil: Genchi, Sibila Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina  
dc.description.fil
Fil: Delrieux, Claudio Augusto. Universidad Nacional del Sur. Departamento de Geografía y Turismo; Argentina  
dc.description.fil
Fil: Perillo, Gerardo Miguel E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina  
dc.journal.title
Ieee Geoscience and Remote Sensing Letters  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8732461/  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/LGRS.2019.2916620