Mostrar el registro sencillo del ítem
dc.contributor.author
Martínez Noël, Giselle María Astrid

dc.contributor.author
Tognetti, Jorge Alberto

dc.contributor.other
Ahmad, Parvaiz
dc.contributor.other
Ahanger, Mohammad Abass
dc.contributor.other
Singh, Vijay Pratap
dc.contributor.other
Tripathi, Durgesh Kumar
dc.contributor.other
Alam, Pravej
dc.date.available
2020-04-28T13:11:53Z
dc.date.issued
2018
dc.identifier.citation
Martínez Noël, Giselle María Astrid; Tognetti, Jorge Alberto; Sugar Signaling Under Abiotic Stress in Plants; Elsevier; 2018; 397-406
dc.identifier.isbn
978-0-12-812689-9
dc.identifier.uri
http://hdl.handle.net/11336/103746
dc.description.abstract
When plants encounter adverse (or potentially adverse) environments, primary metabolic processes, such as growth and/or photosynthesis, are, in general, rapidly affected, and the effect depends on the type and magnitude of stress (Arbonaet al., 2017). For example, water deficit and low temperature directly inhibit growth, whereas low irradiance directly reduces the photosynthetic rate. The imbalance between carbon fixation and consumption leads to altered sugar levels in cells.It is thus not surprising that plants have evolved mechanisms that enable them to get information from hazardous environments through the concentration of certain sugars. Not every sugar has been attributed a signaling role in plant stress,but there is compelling evidence that at least glucose (Glc), fructose (Fru), sucrose (Suc), and trehalose-6-P (T6P) may fulfill this role (Van den Ende and El-Esawe, 2014; Li and Sheen, 2016; Sami et al., 2016; Ceusters et al., 2017).Sugar levels are perceived through sugar sensors that initiate a signaling cascade ultimately resulting in altered gene expression and protein modification. Upon these changes, plants may respond to a specific stressful condition and throughthis response may improve their chance of success. Many of the sugar-mediated responses do not occur in an independent manner, but rather are orchestrated with other endogenous or environmental stimuli. Two large signaling networks thatessentially correspond to metabolically opposite situations have been identified. One of them corresponds to low carbon availability, this is, when C fixation is more affected than consumption or growth: the SnRK family-signaling network (Broeckx etal., 2016). The other corresponds to high C availability, when growth is more affected than photosynthesis: target of rapamycin (TOR) signaling network (Baena-González and Hanson, 2017).Variation in sugar levels is associated not only with stressful environments, but also with normal functioning (i.e., day/night cycles). Accordingly, a large array of Arabidopsis genes (at least 10%) is sugar responsive (Cramer et al., 2011).Therefore, at first glance sugar signaling might appear as a rather unspecific way of responding to external stimuli. To solve this query, plants have evolved complex interplays with stress-related hormones, such as abscisic acid (ABA) and ethylene,as well as with direct environmental stimuli, such as light or mineral nutrients. Furthermore, not all abiotic stresses may be associated with C imbalance. Mechanical stress resulting in plant wounding may also elicit specific sugar-mediated plantresponses to ameliorate plant status and to prevent pathogen infection.In this chapter, we summarize the present status of knowledge about sugar roles in plant responses to abiotic stresses, indicating.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
SUGAR SIGNALING
dc.subject
STRESS
dc.subject
PLANTS
dc.subject.classification
Bioquímica y Biología Molecular

dc.subject.classification
Ciencias Biológicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Sugar Signaling Under Abiotic Stress in Plants
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/bookPart
dc.type
info:ar-repo/semantics/parte de libro
dc.date.updated
2020-02-19T19:38:19Z
dc.journal.pagination
397-406
dc.journal.pais
Estados Unidos

dc.journal.ciudad
San Diego
dc.description.fil
Fil: Martínez Noël, Giselle María Astrid. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Biodiversidad y Biotecnología; Argentina
dc.description.fil
Fil: Tognetti, Jorge Alberto. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/B9780128126899000224?via%3Dihub
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/B978-0-12-812689-9.00022-4
dc.conicet.paginas
446
dc.source.titulo
Plant Metabolites and Regulation Under Environmental Stress
Archivos asociados