Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A detailed characterization of complex networks using Information Theory

Freitas, Cristopher G. S.; Aquino, Andre L. L.; Ramos, Heitor S.; Frery, Alejandro César; Rosso, Osvaldo AníbalIcon
Fecha de publicación: 11/2019
Editorial: Nature Publishing Group
Revista: Scientific Reports
e-ISSN: 2045-2322
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas

Resumen

Understanding the structure and the dynamics of networks is of paramount importance for manyscientific fields that rely on network science. Complex network theory provides a variety of features thathelp in the evaluation of network behavior. However, such analysis can be confusing and misleading asthere are many intrinsic properties for each network metric. Alternatively, Information Theory methodshave gained the spotlight because of their ability to create a quantitative and robust characterizationof such networks. In this work, we use two Information Theory quantifiers, namely Network Entropyand Network Fisher Information Measure, to analyzing those networks. Our approach detects nontrivialcharacteristics of complex networks such as the transition present in the Watts-Strogatz modelfrom k-ring to random graphs; the phase transition from a disconnected to an almost surely connectednetwork when we increase the linking probability of Erdős-Rényi model; distinct phases of scale-freenetworks when considering a non-linear preferential attachment, fitness, and aging features alongsidethe configuration model with a pure power-law degree distribution. Finally, we analyze the numericalresults for real networks, contrasting our findings with traditional complex network methods. Inconclusion, we present an efficient method that ignites the debate on network characterization.
Palabras clave: COMPLEX NETWORKS , INFORMATION THEORY , SHANNON ENTROPY , FISHER INFORMATION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.364Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/103700
URL: http://www.nature.com/articles/s41598-019-53167-5
DOI: http://dx.doi.org/10.1038/s41598-019-53167-5
Colecciones
Articulos (IMTIB)
Articulos de INSTITUTO DE MEDICINA TRASLACIONAL E INGENIERIA BIOMEDICA
Citación
Freitas, Cristopher G. S.; Aquino, Andre L. L.; Ramos, Heitor S.; Frery, Alejandro César; Rosso, Osvaldo Aníbal; A detailed characterization of complex networks using Information Theory; Nature Publishing Group; Scientific Reports; 9; 1; 11-2019; 1-12
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES