Mostrar el registro sencillo del ítem
dc.contributor.author
Sookoian, Silvia Cristina
dc.contributor.author
Castaño, Gustavo Osvaldo
dc.contributor.author
Burgueño, Adriana Laura
dc.contributor.author
Fernández Gianotti, Tomás
dc.contributor.author
Rosselli, Maria Soledad
dc.contributor.author
Pirola, Carlos José
dc.date.available
2020-04-24T19:44:48Z
dc.date.issued
2009-05
dc.identifier.citation
Sookoian, Silvia Cristina; Castaño, Gustavo Osvaldo; Burgueño, Adriana Laura; Fernández Gianotti, Tomás; Rosselli, Maria Soledad; et al.; A diagnostic model to differentiate simple steatosis from nonalcoholic steatohepatitis based on the likelihood ratio form of Bayes theorem; Pergamon-Elsevier Science Ltd; Clinical Biochemistry; 42; 7-8; 5-2009; 624-629
dc.identifier.issn
0009-9120
dc.identifier.uri
http://hdl.handle.net/11336/103588
dc.description.abstract
Objective: To evaluate the performance of a diagnostic model based on a composite index using clinical and laboratory data, including cardiovascular biomarkers, to help practitioners to differentiate patients with simple steatosis from those with nonalcoholic steatohepatitis (NASH). Design and methods: 101 patients with biopsy proven features of nonalcoholic fatty liver disease were included. We investigated the usefulness of 9 biomarkers in predicting the histological disease severity, including routine biochemical tests, C-reactive protein, soluble intercellular adhesion molecule-1 (sICAM-1) and anthropometric evaluation. Receiver operating characteristic (ROC) curves and likelihood ratios (LRs) were used to evaluate the fit of each test. A composite index was calculated as the product of each individual test LR. Results: In a model patient who has all positive tests, the post-test probability for NASH would be 99.5%. Conclusion: The capacity of each individual biomarker to independently predict the disease outcome was lower than a composite index constructed after multiplying the LR for each individual test combined into a “multimarker” score.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DIAGNOSTIC MODEL
dc.subject
FATTY LIVER
dc.subject
NASH
dc.subject
BIOMARKERS
dc.subject.classification
Gastroenterología y Hepatología
dc.subject.classification
Medicina Clínica
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD
dc.title
A diagnostic model to differentiate simple steatosis from nonalcoholic steatohepatitis based on the likelihood ratio form of Bayes theorem
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-04-22T15:35:11Z
dc.journal.volume
42
dc.journal.number
7-8
dc.journal.pagination
624-629
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Sookoian, Silvia Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Gobierno de la Ciudad de Buenos Aires. Hospital "Dr. Abel Zubizarreta"; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentina
dc.description.fil
Fil: Castaño, Gustavo Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Gobierno de la Ciudad de Buenos Aires. Hospital "Dr. Abel Zubizarreta"; Argentina
dc.description.fil
Fil: Burgueño, Adriana Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentina
dc.description.fil
Fil: Fernández Gianotti, Tomás. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Rosselli, Maria Soledad. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Pirola, Carlos José. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Clinical Biochemistry
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.clinbiochem.2008.11.005
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0009912008005948
Archivos asociados