Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Simulación del transporte de calor en nanoestructuras de silicio

Título: Simulation of heat transport in silicon nanostructures
Mancardo Viotti, Agustin MatiasIcon ; Bea, Edgar AlejandroIcon ; Carusela, María FlorenciaIcon ; Monastra, Alejandro GabrielIcon ; Soba, AlejandroIcon
Fecha de publicación: 12/2018
Editorial: Asociación Argentina de Mecánica Computacional
Revista: Mecánica Computacional
ISSN: 2591-3522
Idioma: Español
Tipo de recurso: Artículo publicado
Clasificación temática:
Física de los Materiales Condensados

Resumen

 
En este trabajo se calcula la conductividad térmica de una nanoestructura de silicio sometida a un gradiente térmico, en una situación de no-equilibrio termodinámico. El sistema se simula a través de dinámica molecular, utilizando dos modelos para los potenciales interatómicos: i) un potencial clásico empírico Tersoff-Brenner; ii) un potencial Tight-Binding semi-empírico. Para el primer caso se recurre al software libre LAMMPS y para el segundo se desarrolla un código. En este caso se analiza en detalle la eficiencia de distintas rutinas para la diagonalización de matrices, necesaria para calcular las fuerzas interatómicas, así como la utilización de diferentes modos de paralelización. Se presenta un detallado estudio de la eficiencia del código desarrollado.
 
We calculate the thermal conductivity of a Silicon nanostructure subject to a temperature gradient, in a non equilibrium thermodynamical state. We simulate the system by molecular dynamics using two models for the interatomic potentials: i) an empirical classical Tersoff-Brenner potential; ii) a semiempirical Tight-Binding potential. For the first case we use the free software LAMMPS and for the second we develop a code. In this last case we analyze the performance of the different routines used for diagonalizing matrices, necessary to compute the interatomic forces and we discuss the different parallelization implementations. We present a detailed study of the efficiency of the implemented code.
 
Palabras clave: Silicio , Nanoestructura , Dinamica Molecular , Potencial Tight Binding , Potencial Tersoff-Brenner , Analisis de Eficiencia , Conductividad Termica
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.122Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/103545
URL: https://cimec.org.ar/ojs/index.php/mc/article/view/5747
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Mancardo Viotti, Agustin Matias; Bea, Edgar Alejandro; Carusela, María Florencia; Monastra, Alejandro Gabriel; Soba, Alejandro; Simulación del transporte de calor en nanoestructuras de silicio; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; 36; 47; 12-2018; 2179-2187
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES