Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Enhancement of multianalyte mass spectrometry detection through response surface optimization by least squares and artificial neural network modelling

Teglia, Carla MarielaIcon ; Guiñez, María EvangelinaIcon ; Goicoechea, Hector CasimiroIcon ; Culzoni, Maria JuliaIcon ; Cerutti, Estela SoledadIcon
Fecha de publicación: 10/2019
Editorial: Elsevier Science
Revista: Journal of Chromatography - A
ISSN: 0021-9673
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

In this work, the use of design of experiments and posterior data modelling by artificial neural network (ANN) and least squares (LS) is presented as a suitable analytical tool for the performance optimization of a tandem mass spectrometric detector coupled to ultra-high performance liquid chromatography for the analysis of seventeen veterinary drugs. Firstly, a central composite design was built considering as factors the cone, capillary, extractor and radio frequency voltages of the mass spectrometer in order to obtain a proper combination to improve the sensitivity of the method. Secondly, a one factor design considering the collision voltage was built to define the adequate voltage for each daughter ion. The response surface methodology (RSM) was then applied, and the prediction capability of ANN and LS were compared. As conclusion, the ANN modelling provided better results than LS, both in terms of the ANOVA and predicted areas results. The accuracy of the model prediction was between 85 and 125%, confirming that the estimates of the model were correct, and endorsing the optimization procedure as a suitable way to gather excellent results. The suitability of the new approach and its implications on the simultaneous analysis of seventeen veterinary drugs by ultra-high liquid chromatography coupled to tandem mass spectrometry detection are discussed.
Palabras clave: RESPONSE SURFACE METHODOLOGY (RSM) , ARTIFICIAL NEURAL NETWORKS (ANN) , DESIRABILITY FUNCTION , ULTRA-HIGH PERFORMANCE LIQUID CHROMATOGRAPHY COUPLED TO TANDEM MASS SPECTROMETRIC DETECTION (UHPLC-MS/MS)
Ver el registro completo
 
Archivos asociados
Tamaño: 5.106Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/103542
URL: https://www.sciencedirect.com/science/article/abs/pii/S0021967319310180
DOI: http://dx.doi.org/10.1016/j.chroma.2019.460613
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos(INQUISAL)
Articulos de INST. DE QUIMICA DE SAN LUIS
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Teglia, Carla Mariela; Guiñez, María Evangelina; Goicoechea, Hector Casimiro; Culzoni, Maria Julia; Cerutti, Estela Soledad; Enhancement of multianalyte mass spectrometry detection through response surface optimization by least squares and artificial neural network modelling; Elsevier Science; Journal of Chromatography - A; 1611; 10-2019; 1-31
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES