Artículo
On the (k,i)-coloring of cacti and complete graphs
Fecha de publicación:
01/2018
Editorial:
Charles Babbage Res Ctr
Revista:
Ars Combinatoria
ISSN:
0381-7032
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In the (k,i)-coloring problem, we aim to assign sets of colors of size k to the vertices of a graph G, so that the sets which belong to adjacent vertices of G intersect in no more than i elements and the total number of colors used is minimum. This minimum number of colors is called the (k,i)-chromatic number. We present in this work a very simple linear time algorithm to compute an optimum (k,i)- coloring of cycles and we generalize the result in order to derive a polynomial time algorithm for this problem on cacti. We also perform a slight modification to the algorithm in order to obtain a simpler algorithm for the close coloring problem addressed in [R.C. Brigham and R.D. Dutton, Generalized k-tuple colorings of cycles and other graphs, J. Combin. Theory B 32:90–94, 1982]. Finally, we present a relation between the (k,i)-coloring problem on complete graphs and weighted binary codes.
Palabras clave:
Generalized k-tuple coloring
,
(k,i)-coloring
,
cactus
,
complete graphs
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Citación
Bonomo, Flavia; Durán, Guillermo Enrique; Koch, Ivo Valerio; Valencia Pabon, Mario; On the (k,i)-coloring of cacti and complete graphs; Charles Babbage Res Ctr; Ars Combinatoria; 137; 1-2018; 317-333
Compartir