Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

The Development of More Accurate QSAR Techniques

Lee, Adam; Mercader, Andrew GustavoIcon ; Castro, Eduardo AlbertoIcon ; Duchowicz, Pablo RománIcon
Fecha de publicación: 05/2012
Editorial: The SciTech Publishers
Revista: The SciTech, Journal of Science & Technology
ISSN: 2278-5329
e-ISSN: 2348-098X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Químicas

Resumen

QSAR is a very effective starting step in the development of compounds for vast numbers of industries. Its scale and importance, especially in the medicinal field means it is a dynamic area to research. The size of QSAR also presents problems; there are many different methods in use for each of the steps in a study, from the descriptors in use, to the type of linear regression to apply to the descriptors. The idea was to put forward models that improved upon the existing methods to such a degree that it could become a universal method for QSAR modelling. This project successfully investigated in detail an improvement to the existing methods to choose the correct number of descriptors to include in the model by using Rloo analysis; this resulted in a simpler model compared to previous methods. K – Means clustering was also investigated as part of a novel, variable independent method. This methodology only uses one descriptor as opposed to general QSAR studies which use several. The results for 12 out of the 14 sets were at least as accurate as the results obtained by existing linear methods. An example using PERM; the Stest obtained using the novel method was 0.46 compared to the Stest of 0.53 obtained by using current linear methods. The simplicity associated with the K - Means clustering method and the fact it shows improved predictive potential could lead to an overhaul of all current, more complicated methods in favour of the simpler K- Means based method.
Palabras clave: Qsar Theory , Replacement Method , K-Means Clustering , Molecular Descriptors
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.282Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/103247
URL: https://sites.google.com/a/thescitechpub.com/thescitech/issues
Colecciones
Articulos(IBIMOL)
Articulos de INSTITUTO DE BIOQUIMICA Y MEDICINA MOLECULAR
Articulos(INIFTA)
Articulos de INST.DE INV.FISICOQUIMICAS TEORICAS Y APLIC.
Citación
Lee, Adam; Mercader, Andrew Gustavo; Castro, Eduardo Alberto; Duchowicz, Pablo Román; The Development of More Accurate QSAR Techniques; The SciTech Publishers; The SciTech, Journal of Science & Technology; 1; 1; 5-2012; 3-39
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES