Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Assessment of the effectiveness of supervised and unsupervised methods: maximizing land-cover classification accuracy with spectral indices data

Brendel, AndreaIcon ; Ferrelli, FedericoIcon ; Piccolo, Maria CintiaIcon ; Perillo, Gerardo Miguel E.Icon
Fecha de publicación: 14/01/2019
Editorial: Society of Photo-Optical Instrumentation Engineers
Revista: Journal Of Applied Remote Sensing
ISSN: 1931-3195
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Geociencias multidisciplinaria

Resumen

This study is aimed at evaluating the effectiveness of different supervised and unsupervised methods with information derived from Landsat satellite images and fieldwork in order to maximize the land cover classification accuracy in an area with geomorphologic differences and heterogeneous edaphic characteristics located in the southwest of the Pampas (Argentina). We test two datasets: bands-based and indices-based and also we analyze the spectral behavior of each land cover identified by field trips and surveys with farmers to improve the spatial samples employed in the digital processing. Complementarily, we study the spatial and temporal information about the land cover changes during 2000 to 2016. The classification based on indices widely outperforms the analyses based on bands. The best methods to classify the land cover are the Mahalanobis distance and the maximum likelihood. The values of kappa coefficient and overall accuracy obtain from these two methods allow us to realize a multitemporal study. This study provides essential information for semiarid regions with rain-fed agriculture and livestock activities worldwide. The knowledge obtained quickly and accurately about the land covers and their changes provides essential information about the past and current situations and can be used to predict likely future trends.
Palabras clave: remote sensing , land cover map and changes , assessment accuracy , classification methods
Ver el registro completo
 
Archivos asociados
Tamaño: 5.431Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/102892
URL: https://www.spiedigitallibrary.org/journals/journal-of-applied-remote-sensing/vo
DOI: https://doi.org/10.1117/1.JRS.13.014503
Colecciones
Articulos(IADO)
Articulos de INST.ARG.DE OCEANOGRAFIA (I)
Citación
Brendel, Andrea; Ferrelli, Federico; Piccolo, Maria Cintia; Perillo, Gerardo Miguel E.; Assessment of the effectiveness of supervised and unsupervised methods: maximizing land-cover classification accuracy with spectral indices data; Society of Photo-Optical Instrumentation Engineers; Journal Of Applied Remote Sensing; 13; 1; 14-1-2019; 1-15; 014503
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES