Mostrar el registro sencillo del ítem
dc.contributor.author
Barra, Carolina M.

dc.contributor.author
Alvarez, Bruno

dc.contributor.author
Paul, Sinu
dc.contributor.author
Sette, Alessandro

dc.contributor.author
Peters, Bjoern

dc.contributor.author
Andreatta, Massimo

dc.contributor.author
Buus, Søren

dc.contributor.author
Nielsen, Morten

dc.date.available
2020-04-16T17:58:44Z
dc.date.issued
2018-11
dc.identifier.citation
Barra, Carolina M.; Alvarez, Bruno; Paul, Sinu; Sette, Alessandro; Peters, Bjoern; et al.; Footprints of antigen processing boost MHC class II natural ligand predictions; Springer Nature; Genome Medicine; 10; 1; 11-2018
dc.identifier.issn
1756-994X
dc.identifier.uri
http://hdl.handle.net/11336/102765
dc.description.abstract
BACKGROUND: Major histocompatibility complex class II (MHC-II) molecules present peptide fragments to T cells for immune recognition. Current predictors for peptide to MHC-II binding are trained on binding affinity data, generated in vitro and therefore lacking information about antigen processing. METHODS: We generate prediction models of peptide to MHC-II binding trained with naturally eluted ligands derived from mass spectrometry in addition to peptide binding affinity data sets. RESULTS: We show that integrated prediction models incorporate identifiable rules of antigen processing. In fact, we observed detectable signals of protease cleavage at defined positions of the ligands. We also hypothesize a role of the length of the terminal ligand protrusions for trimming the peptide to the MHC presented ligand. CONCLUSIONS: The results of integrating binding affinity and eluted ligand data in a combined model demonstrate improved performance for the prediction of MHC-II ligands and T cell epitopes and foreshadow a new generation of improved peptide to MHC-II prediction tools accounting for the plurality of factors that determine natural presentation of antigens.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer Nature
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
ANTIGEN PROCESSING
dc.subject
BINDING PREDICTIONS
dc.subject
ELUTED LIGANDS
dc.subject
MACHINE LEARNING
dc.subject
MASS SPECTROMETRY
dc.subject
MHC-II
dc.subject
NEURAL NETWORKS
dc.subject
T CELL EPITOPE
dc.subject.classification
Otras Ciencias de la Salud

dc.subject.classification
Ciencias de la Salud

dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD

dc.title
Footprints of antigen processing boost MHC class II natural ligand predictions
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-11-25T17:45:21Z
dc.journal.volume
10
dc.journal.number
1
dc.journal.pais
Estados Unidos

dc.description.fil
Fil: Barra, Carolina M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
dc.description.fil
Fil: Alvarez, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
dc.description.fil
Fil: Paul, Sinu. La Jolla Institute for Allergy and Immunology; Estados Unidos
dc.description.fil
Fil: Sette, Alessandro. La Jolla Institute for Allergy and Immunology; Estados Unidos
dc.description.fil
Fil: Peters, Bjoern. La Jolla Institute for Allergy and Immunology; Estados Unidos
dc.description.fil
Fil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
dc.description.fil
Fil: Buus, Søren. University Of Copenhagen, Faculty Of Health Sciences; Dinamarca
dc.description.fil
Fil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
dc.journal.title
Genome Medicine
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1186/s13073-018-0594-6
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-018-0594-6
Archivos asociados