Artículo
A three-phase fluidized bed anaerobic biofilm reactor model for treating complex substrates
Fecha de publicación:
12/2005
Editorial:
Elsevier Science Ltd.
Revista:
Computer Aided Chemical Engineering
ISSN:
1570-7946
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The main purpose of this paper is to present a model of a three-phase solid-liquid-gas system to investigate the hydrodynamic and biological behavior and performance of fluidized bed anaerobic biofilm reactors (FBABRs). A general one-dimensional axial dispersive dynamic model is proposed for computing the variation of the properties such as hold-ups and superficial velocities of all phases, biofilm thickness and biological and chemical species concentrations. Biochemical transformations are assumed occurring only in the fluidized bed zone but not in the free-support material zone. The biofilm process model is coupled to the hydrodynamic model of the system through the biofilm detachment rate, which is assumed as a first-order function of the energy dissipation parameter. Non-active biomass is considered as particulate material subject to hydrolysis. A scheme of carbohydrate degradation, kinetic parameters accepted in the literature and design characteristics of a hypothetical FBABR are taken into account to show the model predictions. The performance of the FBABR is analyzed for different flow patterns through different dispersion coefficients for the phases.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INGAR)
Articulos de INST.DE DESARROLLO Y DISEÑO (I)
Articulos de INST.DE DESARROLLO Y DISEÑO (I)
Citación
Fuentes Mora, Mauren; Mussati, Sergio Fabian; Aguirre, Pio Antonio; Scenna, Nicolas Jose; A three-phase fluidized bed anaerobic biofilm reactor model for treating complex substrates; Elsevier Science Ltd.; Computer Aided Chemical Engineering; 20A; 12-2005; 553-558
Compartir