Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Optimal synthesis of complex distillation columns using rigorous models

Grossmann, Ignacio E.; Aguirre, Pio AntonioIcon ; Barttfeld, Mariana
Fecha de publicación: 05/2005
Editorial: Pergamon-Elsevier Science Ltd
Revista: Computers and Chemical Engineering
ISSN: 0098-1354
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Química

Resumen

The synthesis of complex distillation columns has remained a major challenge since the pioneering work by [Sargent, R.W.H., & Gaminibandara, K. (1976). Optimal design of plate distillation columns. In L.C.W. Dixon (Ed.), Optimization in action. New York: Academic Press]. In this paper, we first provide a review of recent work for the optimal design of distillation of individual columns using tray-by-tray models. We examine the impact of different representations and models, NLP, mixed-integer nonlinear programming (MINLP) and generalized disjunctive programming (GDP), as well as the importance of appropriate initialization schemes. We next provide a review of the synthesis of complex column configurations for zeotropic mixtures and discuss different superstructure representations as well as decomposition schemes for tackling these problems. Finally, we briefly discuss extensions for handling azeotropic mixtures. Numerical examples are presented to demonstrate that effective computational strategies are emerging that are based on disjunctive programming models that are coupled with thermodynamic initialization models and integrated through hierarchical decomposition techniques. © 2005 Elsevier Ltd. All rights reserved.Optimization in action. New York: Academic Press]. In this paper, we first provide a review of recent work for the optimal design of distillation of individual columns using tray-by-tray models. We examine the impact of different representations and models, NLP, mixed-integer nonlinear programming (MINLP) and generalized disjunctive programming (GDP), as well as the importance of appropriate initialization schemes. We next provide a review of the synthesis of complex column configurations for zeotropic mixtures and discuss different superstructure representations as well as decomposition schemes for tackling these problems. Finally, we briefly discuss extensions for handling azeotropic mixtures. Numerical examples are presented to demonstrate that effective computational strategies are emerging that are based on disjunctive programming models that are coupled with thermodynamic initialization models and integrated through hierarchical decomposition techniques. © 2005 Elsevier Ltd. All rights reserved.
Palabras clave: complex distillation , optimal design
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 525.2Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/102576
DOI: http://dx.doi.org/10.1016/j.compchemeng.2005.02.030
Colecciones
Articulos(INGAR)
Articulos de INST.DE DESARROLLO Y DISEÑO (I)
Citación
Grossmann, Ignacio E.; Aguirre, Pio Antonio; Barttfeld, Mariana; Optimal synthesis of complex distillation columns using rigorous models; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 29; 6; 5-2005; 1203-1215
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES