Artículo
Linear Regression QSAR Models for Polo-Like Kinase-1 Inhibitors
Fecha de publicación:
02/2018
Editorial:
MDPI
Revista:
Cells
ISSN:
2073-4409
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A structurally diverse dataset of 530 polo-like kinase-1 (PLK1) inhibitors is compiledfrom the ChEMBL database and studied by means of a conformation-independent quantitativestructure-activity relationship (QSAR) approach. A large number (26,761) of molecular descriptorsare explored with the main intention of capturing the most relevant structural characteristics affectingthe bioactivity. The structural descriptors are derived with different freeware, such as PaDEL,Mold2, and QuBiLs-MAS; such descriptor software complements each other and improves the QSARresults. The best multivariable linear regression models are found with the replacement methodvariable subset selection technique. The balanced subsets method partitions the dataset into training,validation, and test sets. It is found that the proposed linear QSAR model improves previouslyreported models by leading to a simpler alternative structure-activity relationship.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INIFTA)
Articulos de INST.DE INV.FISICOQUIMICAS TEORICAS Y APLIC.
Articulos de INST.DE INV.FISICOQUIMICAS TEORICAS Y APLIC.
Citación
Duchowicz, Pablo Román; Linear Regression QSAR Models for Polo-Like Kinase-1 Inhibitors; MDPI; Cells; 7; 2; 2-2018; 1-11
Compartir
Altmétricas
Items relacionados
Mostrando titulos relacionados por título, autor y tema.
-
Artículo QSAR models for thiophene and imidazopyridine derivatives inhibitors of the Polo-Like Kinase 1Comelli, Nieves Carolina ; Duchowicz, Pablo Román ; Castro, Eduardo Alberto (Elsevier Science, 2014-05)