Mostrar el registro sencillo del ítem

dc.contributor.author
Maso Talou, Gonzalo Daniel  
dc.contributor.author
Blanco, Pablo Javier  
dc.contributor.author
Ares, Gonzalo Damián  
dc.contributor.author
Guedes Bezerra, Cristiano  
dc.contributor.author
Lemos, Pedro A.  
dc.contributor.author
Feijóo, Raúl Antonino  
dc.date.available
2020-04-14T17:24:39Z  
dc.date.issued
2018-03  
dc.identifier.citation
Maso Talou, Gonzalo Daniel; Blanco, Pablo Javier; Ares, Gonzalo Damián; Guedes Bezerra, Cristiano; Lemos, Pedro A.; et al.; Mechanical Characterization of the Vessel Wall by Data Assimilation of Intravascular Ultrasound Studies; Frontiers Media S.A.; Frontiers in Physiology; 9; 3-2018; 1-25  
dc.identifier.issn
1664-042X  
dc.identifier.uri
http://hdl.handle.net/11336/102493  
dc.description.abstract
Atherosclerotic plaque rupture and erosion are the most important mechanisms underlying the sudden plaque growth, responsible for acute coronary syndromes and even fatal cardiac events. Advances in the understanding of the culprit plaque structure and composition are already reported in the literature, however, there is still much work to be done toward in-vivo plaque visualization and mechanical characterization to assess plaque stability, patient risk, diagnosis and treatment prognosis. In this work, a methodology for the mechanical characterization of the vessel wall plaque and tissues is proposed based on the combination of intravascular ultrasound (IVUS) imaging processing, data assimilation and continuum mechanics models within a high performance computing (HPC) environment. Initially, the IVUS study is gated to obtain volumes of image sequences corresponding to the vessel of interest at different cardiac phases. These sequences are registered against the sequence of the end-diastolic phase to remove transversal and longitudinal rigid motions prescribed by the moving environment due to the heartbeat. Then, optical flow between the image sequences is computed to obtain the displacement fields of the vessel (each associated to a certain pressure level). The obtained displacement fields are regarded as observations within a data assimilation paradigm, which aims to estimate the material parameters of the tissues within the vessel wall. Specifically, a reduced order unscented Kalman filter is employed, endowed with a forward operator which amounts to address the solution of a hyperelastic solid mechanics model in the finite strain regime taking into account the axially stretched state of the vessel, as well as the effect of internal and external forces acting on the arterial wall. Due to the computational burden, a HPC approach is mandatory. Hence, the data assimilation and computational solid mechanics computations are parallelized at three levels: (i) a Kalman filter level; (ii) a cardiac phase level; and (iii) a mesh partitioning level. To illustrate the capabilities of this novel methodology toward the in-vivo analysis of patient-specific vessel constituents, mechanical material parameters are estimated using in-silico and in-vivo data retrieved from IVUS studies. Limitations and potentials of this approach are exposed and discussed.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Frontiers Media S.A.  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
CORONARY ARTERY  
dc.subject
REDUCED ORDER UNSCENTED KALMAN FILTER  
dc.subject
ARTERIAL WALL  
dc.subject
PARAMETER ESTIMATION  
dc.subject.classification
Otras Ingeniería Médica  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Mechanical Characterization of the Vessel Wall by Data Assimilation of Intravascular Ultrasound Studies  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-04-14T13:34:23Z  
dc.journal.volume
9  
dc.journal.pagination
1-25  
dc.journal.pais
Suiza  
dc.journal.ciudad
Laussane  
dc.description.fil
Fil: Maso Talou, Gonzalo Daniel. Laboratorio Nacional de Computacao Cientifica; Brasil  
dc.description.fil
Fil: Blanco, Pablo Javier. Laboratorio Nacional de Computacao Cientifica; Brasil  
dc.description.fil
Fil: Ares, Gonzalo Damián. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Mecanica. Grupo de Ingeniería Asistida Por Computador; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina  
dc.description.fil
Fil: Guedes Bezerra, Cristiano. Heart Institute (Incor); Brasil  
dc.description.fil
Fil: Lemos, Pedro A.. Heart Institute (Incor); Brasil  
dc.description.fil
Fil: Feijóo, Raúl Antonino. Laboratorio Nacional de Computacao Cientifica; Brasil  
dc.journal.title
Frontiers in Physiology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://journal.frontiersin.org/article/10.3389/fphys.2018.00292/full  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3389/fphys.2018.00292